cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A062980 a(0) = 1, a(1) = 5; for n > 1, a(n) = 6*n*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1).

Original entry on oeis.org

1, 5, 60, 1105, 27120, 828250, 30220800, 1282031525, 61999046400, 3366961243750, 202903221120000, 13437880555850250, 970217083619328000, 75849500508999712500, 6383483988812390400000, 575440151532675686278125, 55318762960656722780160000
Offset: 0

Views

Author

Michael Praehofer (praehofer(AT)ma.tum.de), Jul 24 2001

Keywords

Comments

Number of rooted unlabeled connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges). [Vidal]
Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a pointed set of size 6*n with sigma^3=tau^2=1, acting transitively and with no fixed point. [Vidal]
Also, the asymptotic expansion of the Airy function Ai'(x)/Ai(x) = -sqrt(x) - 1/(4x) + Sum_{n>=2} (-1)^n a(n) (4x)^ (1/2-3n/2). [Praehofer]
Maple 6 gives the wrong asymptotics of Ai'(x)=AiryAi(1,x) as x->oo apart from the 3rd term. Therefore asympt(AiryAi(1,x/4)/AiryAi(x/4),x); reproduces only the value a(1)=1 correctly.
Number of closed linear lambda terms (see [Bodini, Gardy, Jacquot, 2013] and [N. Zeilberger, 2015] references). - Pierre Lescanne, Feb 26 2017
Proved (bijection) by O. Bodini, D. Gardy, A. Jacquot (2013). - Olivier Bodini, Mar 30 2018
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

Examples

			1 + 5*x + 60*x^2 + 1105*x^3 + 27120*x^4 + 828250*x^5 + 30220800*x^6 + ...
		

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
With interspersed zeros column 3 of A380622.
Pointed version of A129114.
Connected pointed version of A129115.

Programs

  • Haskell
    a062980 n = a062980_list !! n
    a062980_list = 1 : 5 : f 2 [5,1] where
       f u vs'@(v:vs) = w : f (u + 1) (w : vs') where
         w = 6 * u * v + sum (zipWith (*) vs_ $ reverse vs_)
         vs_ = init vs
    -- Reinhard Zumkeller, Jun 03 2013
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          6*n*a(n-1) +add(a(k)*a(n-k-1), k=1..n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 31 2017
  • Mathematica
    max = 16; f[y_] := -Sqrt[x] - 1/(4*x) + Sum[(-1)^n*a[n]*(4*x)^(1/2 - 3*(n/2)), {n, 2, max}] /. x -> 1/y^2; s[y_] := Normal[ Series[ AiryAiPrime[x] / AiryAi[x], {x, Infinity, max + 7}]] /. x -> 1/y^2; sol = SolveAlways[ Simplify[ f[y] == s[y], y > 0], y] // First; Join[{1, 5}, Table[a[n], {n, 3, max}] /. sol] (* Jean-François Alcover, Oct 09 2012, from Airy function asymptotics *)
    a[0] = 1; a[n_] := a[n] = (6*(n-1)+4)*a[n-1] + Sum[a[i]*a[n-i-1], {i, 0, n-1}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Nov 29 2013, after Vladimir Reshetnikov *)
  • PARI
    {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6*k - 8) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
    
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def a(n): return n*4 + 1 if n<2 else 6*n*a(n - 1) + sum(a(k)*a(n - k - 1) for k in range(1, n - 1))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 09 2017

Formula

With offset 1, then a(1) = 1 and, for n > 1, a(n) = (6*n-8)*a(n-1) + Sum_{k=1..n-1} a(k)*a(n-k) [Praehofer] [Martin and Kearney].
a(n) = (6/Pi^2)*Integral_{x=0..oo} ((4*x)^(3*n/2)/(Ai(x)^2 + Bi(x)^2)) dt. - Vladimir Reshetnikov, Sep 24 2013
a(n) ~ 3 * 6^n * n! / Pi. - Vaclav Kotesovec, Jan 19 2015
0 = 6*x^2*y' + x*y^2 + (4*x-1)*y + 1, where y(x) = Sum_{n>=0} a(n)*x^n. - Gheorghe Coserea, Apr 02 2017
From Peter Bala, May 21 2017: (Start)
G.f. as an S-fraction: A(x) = 1/(1 - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... See Stokes.
x*A(x) = B(x)/(1 + 2*B(x)), where B(x) = x + 7*x^2 + 84*x^3 + 1463*x^4 + ... is the o.g.f. of A172455.
A(x) = 1/(1 + 2*x - 7*x/(1 - 5*x/(1 - 13*x/(1 - 11*x/(1 - ... - (6*n + 1)*x/(1 - (6*n - 1)*x/(1 - .... (End)

Extensions

Entry revised by N. J. A. Sloane based on comments from Samuel A. Vidal, Mar 30 2007

A005133 Number of index n subgroups of modular group PSL_2(Z).

Original entry on oeis.org

1, 1, 4, 8, 5, 22, 42, 40, 120, 265, 286, 764, 1729, 2198, 5168, 12144, 17034, 37702, 88958, 136584, 288270, 682572, 1118996, 2306464, 5428800, 9409517, 19103988, 44701696, 80904113, 163344502, 379249288, 711598944, 1434840718, 3308997062, 6391673638, 12921383032, 29611074174, 58602591708, 119001063028, 271331133136, 547872065136, 1119204224666, 2541384297716, 5219606253184, 10733985041978, 24300914061436, 50635071045768, 104875736986272, 236934212877684, 499877970985660
Offset: 1

Views

Author

Keywords

Comments

Equivalently, the number of isomorphism class of transitive PSL_2(Z) actions on a finite dotted (i.e., having a distinguished element) set of size n. Also the number of different connected dotted trivalent diagrams of size n. - Samuel A. Vidal, Jul 23 2006
Connected and dotted version of A121352. Dotted version of A121350. Unlabeled version of A121356. Unlabeled and dotted version of A121355. - Samuel A. Vidal, Jul 23 2006

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A121357.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n,n=1..N),t, ascending) ; # Samuel A. Vidal, Jul 23 2006
  • Mathematica
    m = 50; exs2 = Series[ Exp[t + t^2/2], {t, 0, m+1}] // Normal; exs3 = Series[ Exp[t + t^3/3], {t, 0, m+1}] // Normal; exs23 = Sum[ exs2[[n+1]]*exs3[[n+1]]/(t^n/n!), {n, 0, m}]; logexs23 = Series[ Log[exs23], {t, 0, m+1}] // Normal; CoefficientList[ Sum[ logexs23[[n]]*n, {n, 1, m}], t] // Rest (* Jean-François Alcover, Dec 05 2012, translated from Maple *)
  • PARI
    N=50; x='x+O('x^(N+1));
    A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
    Vec(x*log(serconvol(A121357_ser, exp(x)))') \\ Gheorghe Coserea, May 10 2017

Formula

a(n) = A121355(n)/(n-1)!, a(n) = A121356(n)/n!. - Samuel A. Vidal, Jul 23 2006
If A(z) = g.f. of a(n) and B(z) = g.f. of A121356 then A(z) is the Borel transform of B(z). - Samuel A. Vidal, Jul 23 2006

Extensions

More terms from Samuel A. Vidal, Jul 23 2006
Entry revised by N. J. A. Sloane, Jul 25 2006

A121350 Number of conjugacy class of index n subgroups in PSL_2 (ZZ).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 8, 6, 7, 14, 27, 26, 80, 133, 170, 348, 765, 1002, 2176, 4682, 6931, 13740, 31085, 48652, 96682, 217152, 362779, 707590, 1597130, 2789797, 5449439, 12233848, 22245655, 43480188, 97330468, 182619250, 358968639, 800299302, 1542254973, 3051310056, 6783358130
Offset: 0

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of isomorphism class of transitive PSL_2(ZZ) actions on a finite set of size n.
Also the number of different connected trivalent diagrams of size n.
Also the number of (r,s) pair of permutations in S_n, up to simultaneous conjugation, which generate a transitive action and for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

Crossrefs

Connected version of A121352.
Unlabeled version of A121355.
Cf. also A005133, A121356, A121357.

Programs

  • Maple
    with(numtheory,mobius) : mu := k -> `if`( k mod 2 = 0, 2/k, 1/k ) : nu := k -> `if`( k mod 3 = 0, 3/k, 1/k ) : u := (k,n) -> add(mu(k)^(n-2*k2)/(n-2*k2)!/k2!/(2*k)^k2,k2=0..floor(n/ 2)) ; v := (k,n) -> add(nu(k)^(n-3*k3)/(n-3*k3)!/k3!/(3*k)^k3,k3=0..floor(n/ 3)) ; N := 100 # For example. add(convert(taylor(log(add(n!*k^n*u(k,n)*v(k,n)*t^(k*n), n = 0..floor (N/k))),t=0,N+1),polynom),k=1..N) : lZF := sort (%,t, ascending) : add(mobius(k)/k*rem(subs(t=t^k,lZF),t^(N+1),t),k=1..N) : sort (%,t, ascending);
  • Mathematica
    max = 37; mu[k_] := If[Mod[k, 2] == 0, 2/k, 1/k]; nu[k_] := If[Mod[k, 3] == 0, 3/k, 1/k]; u[k_, n_] := Sum[ mu[k]^(n - 2*k2) / (((n - 2*k2)!*k2!)*(2*k)^k2), {k2, 0, Floor[n/2]}]; v[k_, n_] := Sum[ nu[k]^(n - 3*k3) / (((n - 3*k3)!*k3!)*(3*k)^k3), {k3, 0, Floor[n/3]}]; lZF[t_] = Sum[ Normal[ Series[ Log[ Sum[n!*k^n*u[k, n]*v[k, n]*t^(k*n), {n, 0, Floor[max/k]}]], {t, 0, max + 1}]], {k, 1, max}]; Rest[ CoefficientList[ Sum[ (MoebiusMu[k]*PolynomialMod[lZF[t^k], t^(max + 1)])/k, {k, 1, max}], t]] (* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121352 then A(z) = sum_{k > 0} mu(k)/k log(B(z^k)) (Moebius inversion formula).

Extensions

a(0)=1 prepended and a(38) onwards from Andrew Howroyd, Jan 29 2025

A121355 Number of transitive PSL_2(ZZ) actions on a finite labeled set of size n.

Original entry on oeis.org

1, 1, 8, 48, 120, 2640, 30240, 201600, 4838400, 96163200, 1037836800, 30496435200, 828193766400, 13686991718400, 450537408921600, 15880397524992000, 356398802952192000, 13410127414075392000, 569542360114151424000, 16614774394239909888000
Offset: 1

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of different connected labeled trivalent diagrams of size n.
Also the number of (r,s) pair of permutations in S_n, which generate a transitive action and for which r is involutive i.e. r^2 = id and s is of weak order three i.e. s^3 = id.

Crossrefs

Connected version of A121357.
Labeled version of A121350.
Cf. also A005133, A121352, A121356.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n!,n=1..N),t, ascending);
    # Alternatively:
    A121355_list := proc(len) local s,p; s := f -> seq(n!*coeff(series(f,z,n+1),z,n), n=0..len); p := m -> s(exp(z+z^m/m)); s(log(add((p(2)[n+1]*p(3)[n+1])*z^n/n!, n=0..len))) end: # Peter Luschny, Nov 16 2015
  • Mathematica
    m = 19; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; logexs23 = Series[Log[exs23], {t, 0, m}] // Normal; CoefficientList[logexs23, t]*Range[0, m]! // Rest (* Jean-François Alcover, Sep 06 2013, translated and adapted from Samuel Vidal's Maple program *)
  • PARI
    N=20; x='x+O('x^(N+1));
    A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
    Vec(serlaplace(log(serconvol(A121357_ser, exp(x))))) \\ Gheorghe Coserea, May 10 2017

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121357 then A(z) = log(B(z)).

A121356 Number of transitive PSL_2(ZZ) actions on a finite dotted and labeled set of size n.

Original entry on oeis.org

1, 2, 24, 192, 600, 15840, 211680, 1612800, 43545600, 961632000, 11416204800, 365957222400, 10766518963200, 191617884057600, 6758061133824000, 254086360399872000, 6058779650187264000, 241382293453357056000
Offset: 1

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

"Dotted" means having a distinguished element. - N. J. A. Sloane, Feb 06 2012
Equivalently, the number of different connected, dotted and labeled trivalent diagrams of size n.

Crossrefs

Labeled version of A005133.
Labeled and dotted version of A121350.
Dotted version of A121355.
Connected and dotted version of A121357.
Connected, labeled and dotted version of A121352.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : logexs23:=sort(convert(taylor(log(exs23),t,N+1),polynom),t, ascending) : sort(add(op(n,logexs23)*n!*n,n=1..N),t, ascending);
  • Mathematica
    m = 18;
    s2 = Exp[t + t^2/2] + O[t]^(m+1) // Normal;
    s3 = Exp[t + t^3/3] + O[t]^(m+1) // Normal;
    s = Sum[s2[[n+1]] s3[[n+1]]/(t^n/n!), {n, 0, m}];
    CoefficientList[Log[s] + O[t]^(m+1), t] Range[0, m]! Range[0, m] // Rest (* Jean-François Alcover, Sep 02 2018, from Maple *)
  • PARI
    N=18; x='x+O('x^(N+1));
    A121357_ser = serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)));
    A121355_ser = serlaplace(log(serconvol(A121357_ser, exp(x))));
    Vec(x*A121355_ser') \\ Gheorghe Coserea, May 10 2017

Formula

a(n) = A121355(n)*n.
If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = z d/dz B(z) (Euler operator).

A121357 Number of different, not necessarily connected, labeled trivalent diagrams of size n.

Original entry on oeis.org

1, 1, 2, 12, 90, 546, 6156, 81432, 942012, 15114780, 294765336, 5069224656, 108842183352, 2770895886552, 64609245619920, 1742542175582496, 55074355772360976, 1626315165597840912, 53331321825434963232
Offset: 0

Views

Author

Samuel A. Vidal, Jul 23 2006

Keywords

Comments

Equivalently, the number of PSL_2(ZZ) actions on a finite labeled set of size n.
Also the number of (r,s) pair of permutations in S_n for which r is involutive, i.e., r^2 = id and s is of weak order three, i.e., s^3 = id.

Crossrefs

Unconnected version of A121355.
Labeled version of A121352.
Labeled, unconnected version of A121350.
Cf. also A005133, A121356.

Programs

  • Maple
    N := 100 : exs2:=sort(convert(taylor(exp(t+t^2/2),t,N+1),polynom),t, ascending) : exs3:=sort(convert(taylor(exp(t+t^3/3),t,N+1),polynom),t, ascending) : exs23:=sort(add(op(n+1,exs2)*op(n+1,exs3)/(t^n/ n!),n=0..N),t, ascending) : sort(add(op(n+1,exs23)*n!,n=0..N),t, ascending);
  • Mathematica
    m = 18; exs2 = Series[Exp[t + t^2/2], {t, 0, m + 1}] // Normal; exs3 = Series[Exp[t + t^3/3], {t, 0, m + 1}] // Normal; exs23 = Sum[exs2[[n + 1]]*exs3[[n + 1]]/(t^n/n!), {n, 0, m}]; CoefficientList[ Sum[exs23[[n + 1]]*n!, {n, 0, m}], t] (* Jean-François Alcover, Dec 05 2012, translated from Samuel Vidal's Maple program *)
  • PARI
    N=19; x='x+O('x^N);
    Vec(serconvol(serlaplace(exp(x+x^2/2)), serlaplace(exp(x+x^3/3)))) \\ Gheorghe Coserea, May 10 2017

Formula

If A(z) = g.f. of a(n) and B(z) = g.f. of A121355 then A(z) = exp(B(z)).
Six-term linear recurrence: (n^3 + 12*n^2 + 47*n + 61)*a(n + 6) = (29040 + 239224*n^2 + 127628*n + 20715*n^6 + 252267*n^3 + 166304*n^4 + 71889*n^5 + 33*n^9 + 3943*n^7 + 476*n^8 + n^10)*a(n) + (441*n^4 + 3*n^6 + 2160 + 57*n^5 + 4572*n + 3948*n^2 + 1779*n^3)*a(n + 1) + (34920 + 61314*n + 45886*n^2 + 18989*n^3 + 4697*n^4 + 695*n^5 + 57*n^6 + 2*n^7)*a(n + 2) + (19640 + 79*n^5 + 3*n^6 + 861*n^4 + 27598*n + 16084*n^2 + 4975*n^3)*a(n + 3) + (17*n^3 + 425 + n^4 + 350*n + 113*n^2)*a(n + 4) + (1 + 20*n + 9*n^2 + n^3)*a(n + 5) with n = 0, 1, ...
a(n) = A000085(n) * A001470(n). - Mark van Hoeij, May 13 2013

A129114 Number of unrooted unlabeled connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges).

Original entry on oeis.org

1, 3, 11, 81, 1228, 28174, 843186, 30551755, 1291861997, 62352938720, 3381736322813, 203604398647922, 13475238697911184, 972429507963453210, 75993857157285258473, 6393779463050776636807, 576237114190853665462712, 55385308766655472416299110, 5655262782600929403228668176
Offset: 0

Views

Author

Samuel A. Vidal, Mar 30 2007

Keywords

Comments

Equivalently, the number of pairs of permutations (sigma,tau) up to simultaneous conjugacy on a set of size 6*n with sigma^3=tau^2=1, acting transitively and with no fixed point.

Crossrefs

Column 3 of A380626.
Connected version of A129115.
Unrooted version of A062980.
Cf. also A121350, A121352, A005133.

Formula

Inverse Euler transform of A129115. - Andrew Howroyd, Jan 29 2025

Extensions

a(0)=1 prepended and terms a(17) onwards from Andrew Howroyd, Jan 29 2025

A129115 Number of unrooted unlabeled not necessarily connected triangular maps on a compact closed oriented surface with 2n faces (and thus 3n edges).

Original entry on oeis.org

1, 3, 17, 124, 1618, 33564, 956263, 33736198, 1402665692, 66902717187, 3596481426812, 215049652739982, 14154852098315796, 1016911004448831247, 79174846391508487198, 6640511488761139957873, 596865894849670793348763, 57234563024075319273338452, 5832189914390355126473955563
Offset: 0

Views

Author

Samuel A. Vidal, Mar 30 2007

Keywords

Comments

Equivalently, the number of pair of permutations (sigma,tau) up to simultaneous conjugacy on a set of size 6*n with sigma^3=tau^2=1 with no fixed point.

Crossrefs

Not necessarily connected version of A129114.
Unrooted, not necessarily connected version of A062980.
Cf. also A121350, A121352, A005133.

Programs

  • PARI
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    seq(n)={my(t=6*n); Vec(prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(3,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%6==0, r!*polcoef(p,r)/(k^r)*x^(k*r/6)), O(x*x^n)) ))} \\ Andrew Howroyd, Jan 29 2025

Formula

Euler transform of A129114. - Andrew Howroyd, Jan 29 2025

Extensions

a(17) onwards from Andrew Howroyd, Jan 28 2025
Showing 1-8 of 8 results.