A000699 Number of irreducible chord diagrams with 2n nodes.
1, 1, 1, 4, 27, 248, 2830, 38232, 593859, 10401712, 202601898, 4342263000, 101551822350, 2573779506192, 70282204726396, 2057490936366320, 64291032462761955, 2136017303903513184, 75197869250518812754, 2796475872605709079512, 109549714522464120960474, 4509302910783496963256400, 194584224274515194731540740
Offset: 0
Examples
a(31)=627625976637472254550352492162870816129760 was computed using Kreimer's Hopf algebra of rooted trees. It subsumes 2.6*10^21 terms in quantum field theory. G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 27*x^4 + 248*x^5 + 2830*x^6 +... where d/dx (A(x) - 1)^2/x = 1 + 4*x + 27*x^2 + 248*x^3 + 2830*x^4 +...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..404 (terms up to n=100 from T. D. Noe)
- Serban T. Belinschi, Marek Bozejko, Franz Lehner, and Roland Speicher, The normal distribution is "boxplus"-infinitely divisible, arXiv:0910.4263 [math.OA], 2009-2010.
- Daniel J. Bernstein, S. Engels, T. Lange, R. Niederhagen, et al., Faster elliptic-curve discrete logarithms on FPGAs, Preprint, 2016.
- Michael Borinsky, Generating asymptotics for factorially divergent sequences, arXiv preprint arXiv:1603.01236 [math.CO], 2016.
- Michael Borinsky, Generating asymptotics for factorially divergent sequences, El. J. Combin. 25 (2018) P4.1, Sect 7.1.
- Michael Borinsky, Gerald V. Dunne, and Karen Yeats, Tree-tubings and the combinatorics of resurgent Dyson-Schwinger equations, arXiv:2408.15883 [math-ph], 2024. See p. 9.
- David J. Broadhurst and Dirk Kreimer, Combinatoric explosion of renormalization ..., arXiv:hep-th/9912093, 1999, 2000.
- David J. Broadhurst and Dirk Kreimer, Combinatoric explosion of renormalization tamed by Hopf algebra: 30-loop Pad-Borel resummation, Phys. Lett. B 475 (2000), 63-70.
- Christian Brouder, On the trees of quantum fields, arXiv:hep-th/9906111, 1999, p. 6.
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts).
- Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, May 23, 2011.
- Jonathan Burns and Tilahun Muche, Counting Irreducible Double Occurrence Words, arXiv preprint arXiv:1105.2926 [math.CO], 2011.
- Julien Courtiel, Karen Yeats, and Noam Zeilberger, Connected chord diagrams and bridgeless maps, arXiv:1611.04611 [math.CO], 2016.
- Serge Dulucq, Etude combinatoire de problèmes d'énumération, d'algorithmique sur les arbres et de codage par des mots, a thesis presented to l'Université de Bordeaux I, 1987. (Annotated scanned copy)
- Philippe Flajolet and Marc Noy, Analytic Combinatorics of Chord Diagrams, in: Formal power series and algebraic combinatorics (FPSAC '00) Moscow, 2000, pp. 191-201.
- Zhen Huang, Denis Golež, Hugo U. R. Strand, and Jason Kaye, Automated evaluation of imaginary time strong coupling diagrams by sum-of-exponentials hybridization fitting, arXiv:2503.19727 [cond-mat.str-el], 2025. See p. 21.
- Martin Klazar, Non-P-recursiveness of numbers of matchings or linear chord diagrams with many crossings, Advances in Appl. Math., Vol. 30 (2003), pp. 126-136.
- Martin Klazar, Counting even and odd partitions, Amer. Math. Monthly, 110 (No. 6, 2003), 527-532.
- Florian Kogelbauer and Ilya Karlin, On the Relation of Exact Hydrodynamics to the Chapman-Enskog Series, arXiv:2506.17441 [math-ph], 2025. See pp. 4-5.
- Ali Assem Mahmoud, On the Asymptotics of Connected Chord Diagrams, University of Waterloo (Ontario, Canada 2019).
- Ali Assem Mahmoud, An Asymptotic Expansion for the Number of 2-Connected Chord Diagrams, arXiv:2009.12688 [math.CO], 2020.
- Ali Assem Mahmoud, Chord Diagrams and the Asymptotic Analysis of QED-type Theories, arXiv:2011.04291 [hep-th], 2020.
- Ali Assem Mahmoud, An asymptotic expansion for the number of two-connected chord diagrams, J. Math. Phys. (2023) Vol. 64, 122301. See Example 2.1.
- Ali Assem Mahmoud and Karen Yeats, Connected Chord Diagrams and the Combinatorics of Asymptotic Expansions, arXiv:2010.06550 [math.CO], 2020.
- Nicolas Marie and Karen Yeats, A chord diagram expansion coming from some Dyson-Schwinger equations, arXiv:1210.5457 [math.CO], 2012, Section 4.1.
- Albert Nijenhuis and Herbert S. Wilf, The enumeration of connected graphs and linked diagrams, J. Combin. Theory Ser. A 27 (1979), no. 3, 356--359. MR0555804 (82b:05074).
- Vincent Pilaud and Juanjo Rué, Analytic combinatorics of chord and hyperchord diagrams with k crossings, arXiv preprint arXiv:1307.6440 [math.CO], 2013.
- J. Riordan, Letter, Jul 06 1978
- Einar A. Rødland, Pseudoknots in RNA Secondary Structures: Representation, Enumeration, and Prevalence, J. Comput. Biology, Vol 13, No 6 (2006), 1197-1213. (see equation 10)
- R. R. Stein, On a class of linked diagrams, I. Enumeration, J. Combin. Theory, A 24 (1978), 357-366.
- R. R. Stein and C. J. Everett, On a class of linked diagrams, II. Asymptotics, Discrete Math., 21 (1978), 309-318.
- Jacques Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25.
- Jacques Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25. [Annotated, corrected, scanned copy]
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259 (nonseparable integer systems on n pairs). (Give an incorrect a(6)=2720.)
- Gus Wiseman, The a(4) = 27 connected chord diagrams.
- Gus Wiseman, The a(5) = 248 connected chord diagrams.
- Gus Wiseman, Constructive Mathematica program for A000699.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv:1803.10080 [math.LO], 2018-2019 (A revised version of a 2017 conference paper).
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Rutgers Experimental Math Seminar, Sep 13 2018. Part 2 is vimeo.com/289910554.
Crossrefs
Programs
-
Maple
A000699 := proc(n) option remember; if n <= 1 then 1; else add((2*i-1)*procname(i)*procname(n-i),i=1..n-1) ; end if; end proc: seq(A000699(n),n=0..30) ; # R. J. Mathar, Jun 12 2018
-
Mathematica
terms = 22; A[] = 0; Do[A[x] = x + x^2 * D[A[x]^2/x, x] + O[x]^(terms+1) // Normal, terms]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Apr 06 2012, after Paul D. Hanna, updated Jan 11 2018 *) a = ConstantArray[0,20]; a[[1]]=1; Do[a[[n]] = (n-1)*Sum[a[[i]]*a[[n-i]],{i,1,n-1}],{n,2,20}]; a (* Vaclav Kotesovec, Feb 22 2014 *) Module[{max = 20, s}, s = InverseSeries[ComplexExpand[Re[Series[2 DawsonF[x], {x, Infinity, 2 max + 1}]]]]; Table[SeriesCoefficient[s, 2 n - 1] 2^n, {n, 1, max}]] (* Vladimir Reshetnikov, Apr 23 2016 *)
-
PARI
{a(n)=local(A=1+x*O(x^n)); for(i=1, n, A=1+x+x^2*deriv((A-1)^2/x)+x*O(x^n)); polcoeff(A, n)} \\ Paul D. Hanna, Dec 31 2010 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
-
PARI
{a(n) = my(A); A = 1+O(x) ; for( i=0, n, A = 1+x + (A-1)*(2*x*A' - A + 1)); polcoeff(A, n)}; /* Michael Somos, May 12 2012 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020] */
-
PARI
seq(N) = { my(a = vector(N)); a[1] = 1; for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a; }; seq(22) \\ Gheorghe Coserea, Jan 22 2017
-
PARI
seq(n)={my(g=serlaplace(1 / sqrt(1 - 2*x + O(x*x^n)))); Vec(sqrt((x/serreverse( x*g^2 ))))} \\ Andrew Howroyd, Nov 21 2024
-
Python
def A000699_list(n): list = [1, 1] + [0] * (n - 1) for i in range(2, n + 1): list[i] = (i - 1) * sum(list[j] * list[i - j] for j in range(1, i)) return list print(A000699_list(22)) # M. Eren Kesim, Jun 23 2021
Formula
a(n) = (n-1)*Sum_{i=1..n-1} a(i)*a(n-i) for n > 1, with a(1) = a(0) = 1. [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
A212273(n) = n * a(n). - Michael Somos, May 12 2012
G.f. satisfies: A(x) = 1 + x + x^2*[d/dx (A(x) - 1)^2/x]. - Paul D. Hanna, Dec 31 2010 [Modified to include a(0) = 1. - Paul D. Hanna, Nov 06 2020]
a(n) ~ n^n * 2^(n+1/2) / exp(n+1) * (1 - 31/(24*n) - 2207/(1152*n^2) - 3085547/(414720*n^3) - 1842851707/(39813120*n^4) - ...). - Vaclav Kotesovec, Feb 22 2014, extended Oct 23 2017
G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 2*x/(A(x) - 3*x/(A(x) - 4*x/(A(x) - 5*x/(A(x) - ...))))), a continued fraction relation. - Paul D. Hanna, Nov 04 2020
G.f. A(x) satisfies: A(x*B(x)^2) = B(x) where B(x) is the g.f. of A001147. - Andrew Howroyd, Nov 21 2024
Extensions
More terms from David Broadhurst, Dec 14 1999
Inserted "chord" in definition. - N. J. A. Sloane, Jan 19 2017
Added a(0)=1. - N. J. A. Sloane, Nov 05 2020
Modified formulas slightly to include a(0) = 1. - Paul D. Hanna, Nov 06 2020
Comments