cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A269474 Column 2 of A266240.

Original entry on oeis.org

105, 8112, 396792, 15663360, 544475232, 17388675072, 522638463744, 15007609257984, 415870219556352, 11199568168353792, 294628320168579072, 7600751972236394496, 192860109239084236800, 4824494454867178291200, 119207140785929743368192, 2913796518104633469566976
Offset: 3

Views

Author

Vaclav Kotesovec, Feb 27 2016

Keywords

Crossrefs

Cf. A266240.

Formula

Recurrence: (n-4)*(n-3)*(n-2)*(2100*n^3 - 22577*n^2 + 77702*n - 86760)*a(n) = 48*(n-4)*(37800*n^5 - 463086*n^4 + 2015601*n^3 - 3767956*n^2 + 2822996*n - 645120)*a(n-2) - 20736*(n-2)*(3*n - 10)*(3*n - 8)*(2100*n^3 - 9977*n^2 + 12594*n - 4864)*a(n-4).
a(n) ~ 7 * 2^(2*n - 9/2) * 3^(3*n/2 - 3/2) * n^(5/2) / (5*sqrt(Pi)).

A269475 Column 3 of A266240.

Original entry on oeis.org

50050, 6722816, 518329776, 30117189632, 1465000951488, 62975678300160, 2470387045006848, 90292919910531072, 3119354397619080192, 102915871717248204800, 3267760665556454645760, 100445704140200060387328, 3002862102035496252702720, 87633111828414712529289216
Offset: 5

Views

Author

Vaclav Kotesovec, Feb 27 2016

Keywords

Crossrefs

Cf. A266240.

Formula

Recurrence: (n-6)*(n-5)*(n-4)*(29502900*n^5 - 638835615*n^4 + 5313614190*n^3 - 21144479540*n^2 + 40005200008*n - 28551437376)*a(n) = 48*(n-6)*(531052200*n^7 - 11764567170*n^6 + 101977544025*n^5 - 438480135000*n^4 + 970011352524*n^3 - 1010121211456*n^2 + 327724902720*n + 69389516800)*a(n-2) - 20736*(n-2)*(3*n - 10)*(3*n - 8)*(29502900*n^5 - 343806615*n^4 + 1383045270*n^3 - 2234617160*n^2 + 1108144448*n + 112680960)*a(n-4).
a(n) ~ 5 * 7^2 * 3^(3*n/2-3) * 2^(2*n-15) * n^5.

A269476 Column 4 of A266240.

Original entry on oeis.org

56581525, 11100235520, 1191262520280, 92809670660096, 5875149131469024, 320744781170737152, 15658287081481903872, 700135726021459574784, 29159104554804741742080, 1145151298823440950099968, 42804391324225851826851840, 1533861483718086352674226176
Offset: 7

Views

Author

Vaclav Kotesovec, Feb 27 2016

Keywords

Crossrefs

Cf. A266240.

Formula

Recurrence: (n-8)*(n-7)*(n-6)*(8865313032240*n^7 - 317083364299800*n^6 + 4684927154541525*n^5 - 36954847894577400*n^4 + 167489792744727732*n^3 - 434509931893116160*n^2 + 594863631325194528*n - 329506352166682880)*a(n) = 48*(n-8)*(159575634580320*n^9 - 5627712740106240*n^8 + 82146941258133330*n^7 - 643013667125582535*n^6 + 2917921647785653476*n^5 - 7719296227286609376*n^4 + 11246681386937347392*n^3 - 7567478663869195664*n^2 + 942570862638469952*n + 715530999520296960)*a(n-2) - 20736*(n-2)*(3*n - 10)*(3*n - 8)*(8865313032240*n^7 - 192968981848440*n^6 + 1624613077652085*n^5 - 6648290558122950*n^4 + 13479332779855932*n^3 - 11835869605572088*n^2 + 2032110719189792*n + 1581052254093312)*a(n-4).
a(n) ~ 37079 * 2^(2*n - 21/2) * 3^(3*n/2 - 11/2) * n^(15/2) / (3575*sqrt(Pi)).

A002005 Number of rooted planar cubic maps with 2n vertices.

Original entry on oeis.org

1, 4, 32, 336, 4096, 54912, 786432, 11824384, 184549376, 2966845440, 48855252992, 820675092480, 14018773254144, 242919827374080, 4261707069259776, 75576645116559360, 1353050213048123392, 24428493151359467520, 444370175232646840320, 8138178004138611179520
Offset: 0

Views

Author

Keywords

Comments

Equivalently, number of rooted planar triangulations with 2n faces.
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=0 of A266240.

Programs

  • Maple
    seq(2*8^n*binomial(n*3/2, n)/((n + 2)*(n + 1)), n = 0..19); # Peter Luschny, Nov 14 2022
  • Mathematica
    Table[2^(2 n + 1) (3 n)!!/((n + 2)! n!!), {n, 0, 20}] (* Vincenzo Librandi, Dec 28 2015 *)
    CoefficientList[Series[(-1 + 96 z + Hypergeometric2F1[-2/3,-1/3,1/2,432z^2]- 96 z Hypergeometric2F1[-1/6,1/6,3/2,432z^2])/(192 z^2), {z, 0, 10}], z] (* Benedict W. J. Irwin, Aug 07 2016 *)
  • PARI
    factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
    a(n) = 2^(2*n+1)*factorial2(3*n)/((n+2)!*factorial2(n));
    vector(20, i, a(i-1))
    \\ test: y = Ser(vector(201, n, a(n-1))); x*(1-432*x^2)*y' == 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1
    \\ Gheorghe Coserea, Jun 13 2017

Formula

a(n) = 2^(2*n+1)*(3*n)!!/((n+2)!*n!!). - Sean A. Irvine, May 19 2013
a(n) ~ sqrt(6/Pi) * n^(-5/2) * (12*sqrt(3))^n. - Gheorghe Coserea, Feb 25 2016
G.f.: (96*x - 1 + 2F1(-2/3, -1/3; 1/2; 432*x^2) - 96*x*2F1(-1/6, 1/6; 3/2; 432*x^2))/(192*x^2). - Benedict W. J. Irwin, Aug 07 2016
From Gheorghe Coserea, Jun 13 2017: (Start)
G.f. y(x) satisfies:
x*(1-432*x^2)*deriv(y,x) = 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1.
0 = 64*x^3*y^3 + x*(1-96*x)*y^2 + (30*x-1)*y - 27*x + 1.
(End).
D-finite with recurrence (n+2)*(n+1)*a(n) -48*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Feb 08 2021
From Karol A. Penson and Katarzyna Gorska (katarzyna.gorska@ifj.edu.pl), Nov 02 2022: (Start)
a(n) = Integral_{x=0..12*sqrt(3)} x^n*W(x), where
W(x) = (T1(x) + T2(x)) / T3(x), and
T1(x) = -x^(2/3) * (108 + sqrt(3) * sqrt(432 - x^2));
T2(x) = 3^(1/6)*(36+sqrt(3)*sqrt(432-x^2))^(2/3) * (-432+x^2+36*sqrt(3)* sqrt(432-x^2)) / sqrt(432-x^2);
T3(x) = (128*3^(5/6)*Pi*x^(1/3)*(36+sqrt(3)*sqrt(432-x^2))^(1/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 12*sqrt(3). (End)
a(n) = 2^(3*n + 1)*binomial(n*3/2, n)/((n + 1)*(n + 2)) = A358367(n) / A000217(n + 1). - Peter Luschny, Nov 14 2022

Extensions

More terms from Sean A. Irvine, May 19 2013

A269418 a(n) is numerator of y(n), where y(n+1) = (25*n^2-1)/48 * y(n) + (1/2)*Sum_{k=1..n}y(k)*y(n+1-k), with y(0) = -1.

Original entry on oeis.org

-1, 1, 49, 1225, 4412401, 73560025, 245229441961, 7759635184525, 2163099334469560445, 243352176577765537625, 126154825844683612669806743, 307996788703417873806157775, 3816216508144039222348410175181221, 4472139245793702477426700875742975
Offset: 0

Views

Author

Gheorghe Coserea, Feb 25 2016

Keywords

Examples

			For n=0 we have t(0) = (-1) / (2^(-2)*gamma(-1/2)) = 2/sqrt(Pi).
For n=1 we have t(1) = (1/48) / (2^(-1)*gamma(2))  = 1/24.
n   y(n)                        t(n)
0   -1                          2/sqrt(Pi)
1   1/48                        1/24
2   49/4608                     7/(4320*sqrt(Pi))
3   1225/55296                  245/15925248
4   4412401/42467328            37079/(96074035200*sqrt(Pi))
5   73560025/84934656           38213/14089640214528
6   245229441961/21743271936    5004682489/(92499927372103680000*sqrt(Pi))
7   7759635184525/36691771392   6334396069/20054053184087387013120
...
		

Crossrefs

Cf. A266240, A269419 (denominator).

Programs

  • Mathematica
    y[0] = -1;
    y[n_] := y[n] = (25(n-1)^2-1)/48 y[n-1] + 1/2 Sum[y[k] y[n-k], {k, 1, n-1}];
    Table[y[n] // Numerator, {n, 0, 13}] (* Jean-François Alcover, Oct 23 2018 *)
  • PARI
    seq(n) = {
      my(y  = vector(n));
      y[1] = 1/48;
      for (g = 1, n-1,
           y[g+1] = (25*g^2-1)/48 * y[g] + 1/2*sum(k = 1, g, y[k]*y[g+1-k]));
      return(concat(-1,y));
    }
    apply(numerator, seq(13))

Formula

t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)), where t(g) is the orientable map asymptotics constant and gamma is the Gamma function.

A269419 a(n) is denominator of y(n), where y(n+1) = (25*n^2-1)/48 * y(n) + (1/2)*Sum_{k=1..n}y(k)*y(n+1-k), with y(0) = -1.

Original entry on oeis.org

1, 48, 4608, 55296, 42467328, 84934656, 21743271936, 36691771392, 400771988324352, 1352605460594688, 16620815899787526144, 779100745302540288, 153177439332441840943104, 2393397489569403764736, 235280546814630667688607744, 57441539749665690353664
Offset: 0

Views

Author

Gheorghe Coserea, Feb 25 2016

Keywords

Examples

			For n=0 we have t(0) = (-1) / (2^(-2)*gamma(-1/2)) = 2/sqrt(Pi).
For n=1 we have t(1) = (1/48) / (2^(-1)*gamma(2))  = 1/24.
n   y(n)                        t(n)
0   -1                          2/sqrt(Pi)
1   1/48                        1/24
2   49/4608                     7/(4320*sqrt(Pi))
3   1225/55296                  245/15925248
4   4412401/42467328            37079/(96074035200*sqrt(Pi))
5   73560025/84934656           38213/14089640214528
6   245229441961/21743271936    5004682489/(92499927372103680000*sqrt(Pi))
7   7759635184525/36691771392   6334396069/20054053184087387013120
...
		

Crossrefs

Cf. A266240, A269418 (numerator).

Programs

  • Mathematica
    y[0] = -1;
    y[n_] := y[n] = (25(n-1)^2-1)/48 y[n-1] + 1/2 Sum[y[k] y[n-k], {k, 1, n-1}];
    Table[y[n] // Denominator, {n, 0, 15}] (* Jean-François Alcover, Oct 23 2018 *)
  • PARI
    seq(n) = {
      my(y  = vector(n));
      y[1] = 1/48;
      for (g = 1, n-1,
           y[g+1] = (25*g^2-1)/48 * y[g] + 1/2*sum(k = 1, g, y[k]*y[g+1-k]));
      return(concat(-1,y));
    }
    apply(denominator, seq(14))

Formula

t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)), where t(g) is the orientable map asymptotics constant and gamma is the Gamma function.

A269473 a(n) is the number of rooted 2n-face triangulations in an orientable surface of genus 1.

Original entry on oeis.org

1, 28, 664, 14912, 326496, 7048192, 150820608, 3208396800, 67968706048, 1435486650368, 30246600953856, 636154755940352, 13360333295173632, 280258138588839936, 5873204471357374464, 122980760637407232000, 2573349967992101142528, 53815038103588370907136
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 27 2016

Keywords

Crossrefs

Column k=1 of A266240.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[Sqrt[1728 - 432/x + (30*Sqrt[1 + 48*x] - 54)/x^2 + (Sqrt[1 + 48*x] - 1)/x^3]/864, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Jul 28 2018 *)
  • PARI
    factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
    a(n) = {
      my(f2 = factorial2);
      4^(n-1)*f2(n-1)/n! * sum(k=0, n-1, 3^k * f2(3*n-2*k-2)/(n-1-k)!);
    };
    \\ test: y='x*Ser(vector(303, n, a(n))); 0 == 2*(432*x^2 - 1)^2*y^3 + (432*x^2 - 1)*y^2 + 54*x^2*y + x^2
    \\ Gheorghe Coserea, Jul 27 2018

Formula

Recurrence: (n-1)*n*(15*n - 46)*a(n) = 48*(270*n^3 - 1503*n^2 + 2478*n - 1280)*a(n-2) - 20736*(3*n - 10)*(3*n - 8)*(15*n - 16)*a(n-4).
a(n) ~ 2^(2*n-3) * 3^(3*n/2).
From Gheorghe Coserea, Jul 27 2018: (Start)
a(n+1) = 4^n * n!!/(n+1)! * Sum_{k=0..n} 3^k*(3*n-2*k+1)!!/(n-k)!. (see Krasko link)
G.f. y(x) satisfies:
0 = 2*(432*x^2 - 1)^2*y^3 + (432*x^2 - 1)*y^2 + 54*x^2*y + x^2.
0 = x*(432*x^2 - 1)*(108*x^2 + 1)*deriv(y,x) + 2*(432*x^2 - 1)*(648*x^2 + 1)*y^2 + (31104*x^4 + 1116*x^2 + 1)*y + 30*x^2.
0 = (5184*x^2 - 7)*(432*x^2 - 1)^2*y''' + 1296*x*(432*x^2 - 1)*(12096*x^2 - 13)*y'' + 48*(199314432*x^4 - 479088*x^2 + 581)*y' + 663552*x*(2592*x^2 - 11)*y.
(End)
Showing 1-7 of 7 results.