A269919
Triangle read by rows: T(n,g) is the number of rooted maps with n edges on an orientable surface of genus g.
Original entry on oeis.org
1, 2, 9, 1, 54, 20, 378, 307, 21, 2916, 4280, 966, 24057, 56914, 27954, 1485, 208494, 736568, 650076, 113256, 1876446, 9370183, 13271982, 5008230, 225225, 17399772, 117822512, 248371380, 167808024, 24635754, 165297834, 1469283166, 4366441128
Offset: 0
Triangle starts:
n\g [0] [1] [2] [3] [4]
[0] 1;
[1] 2;
[2] 9, 1;
[3] 54, 20;
[4] 378, 307, 21;
[5] 2916, 4280, 966;
[6] 24057, 56914, 27954, 1485;
[7] 208494, 736568, 650076, 113256;
[8] 1876446, 9370183, 13271982, 5008230, 225225;
[9] 17399772, 117822512, 248371380, 167808024, 24635754;
[10] ...
Columns g=0-10 give:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
Same as
A238396 except for the zeros.
-
T[0, 0] = 1; T[n_, g_] /; g<0 || g>n/2 = 0; T[n_, g_] := T[n, g] = ((4n-2)/ 3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n-k)- 1) T[k-1, i] T[n-k-1, g-i], {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
Table[T[n, g], {n, 0, 10}, {g, 0, n/2}] // Flatten (* Jean-François Alcover, Jul 20 2018 *)
-
N = 9; gmax(n) = n\2;
Q = matrix(N+1, N+1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, N, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric();
concat(vector(N+1, n, vector(1 + gmax(n-1), g, Qget(n-1, g-1))))
A238396
Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 2, 0, 9, 1, 0, 54, 20, 0, 0, 378, 307, 21, 0, 0, 2916, 4280, 966, 0, 0, 0, 24057, 56914, 27954, 1485, 0, 0, 0, 208494, 736568, 650076, 113256, 0, 0, 0, 0, 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0, 17399772, 117822512, 248371380, 167808024, 24635754, 0, 0, 0, 0, 0, 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0
Offset: 0
Triangle starts:
00: 1,
01: 2, 0,
02: 9, 1, 0,
03: 54, 20, 0, 0,
04: 378, 307, 21, 0, 0,
05: 2916, 4280, 966, 0, 0, 0,
06: 24057, 56914, 27954, 1485, 0, 0, 0,
07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
...
- David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.
Columns k for 0<=k<=10 are:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
See
A267180 for nonorientable analog.
The triangle without the zeros is
A269919.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Gheorghe Coserea *)
-
N=20;
MEM=matrix(N+1,N+1, r,c, -1); \\ for memoization
Q(n,g)=
{
if (n<0, return( (g<=0) ) ); \\ not given in paper
if (g<0, return( 0 ) ); \\ not given in paper
if (n<=0, return( g==0 ) ); \\ as in paper
my( m = MEM[n+1,g+1] );
if ( m != -1, return(m) ); \\ memoized value
my( t=0 );
t += (4*n-2)/3 * Q(n-1, g);
t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
my(l, j);
t += 1/2*
sum(k=1, n-1, l=n-k; \\ l+k == n, both >= 1
sum(i=0, g, j=g-i; \\ i+j == g, both >= 0
(2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
);
);
t *= 6/(n+1);
MEM[n+1, g+1] = t; \\ memoize
return(t);
}
for (n=0, N, for (g=0, n, print1(Q(n, g),", "); ); print(); ); /* print triangle */
A269418
a(n) is numerator of y(n), where y(n+1) = (25*n^2-1)/48 * y(n) + (1/2)*Sum_{k=1..n}y(k)*y(n+1-k), with y(0) = -1.
Original entry on oeis.org
-1, 1, 49, 1225, 4412401, 73560025, 245229441961, 7759635184525, 2163099334469560445, 243352176577765537625, 126154825844683612669806743, 307996788703417873806157775, 3816216508144039222348410175181221, 4472139245793702477426700875742975
Offset: 0
For n=0 we have t(0) = (-1) / (2^(-2)*gamma(-1/2)) = 2/sqrt(Pi).
For n=1 we have t(1) = (1/48) / (2^(-1)*gamma(2)) = 1/24.
n y(n) t(n)
0 -1 2/sqrt(Pi)
1 1/48 1/24
2 49/4608 7/(4320*sqrt(Pi))
3 1225/55296 245/15925248
4 4412401/42467328 37079/(96074035200*sqrt(Pi))
5 73560025/84934656 38213/14089640214528
6 245229441961/21743271936 5004682489/(92499927372103680000*sqrt(Pi))
7 7759635184525/36691771392 6334396069/20054053184087387013120
...
- Gheorghe Coserea, Table of n, a(n) for n = 0..187
- Edward A. Bender, Zhicheng Gao, L. Bruce Richmond, The map asymptotics constant tg, The Electronic Journal of Combinatorics, Volume 15 (2008), Research Paper #R51.
- Stavros Garoufalidis, Thang T.Q. Le, Marcos Marino, Analyticity of the Free Energy of a Closed 3-Manifold, arXiv:0809.2572 [math.GT], 2008.
-
y[0] = -1;
y[n_] := y[n] = (25(n-1)^2-1)/48 y[n-1] + 1/2 Sum[y[k] y[n-k], {k, 1, n-1}];
Table[y[n] // Numerator, {n, 0, 13}] (* Jean-François Alcover, Oct 23 2018 *)
-
seq(n) = {
my(y = vector(n));
y[1] = 1/48;
for (g = 1, n-1,
y[g+1] = (25*g^2-1)/48 * y[g] + 1/2*sum(k = 1, g, y[k]*y[g+1-k]));
return(concat(-1,y));
}
apply(numerator, seq(13))
A266240
Triangle read by rows: T(n,g) is the number of rooted 2n-face triangulations in an orientable surface of genus g.
Original entry on oeis.org
1, 4, 1, 32, 28, 336, 664, 105, 4096, 14912, 8112, 54912, 326496, 396792, 50050, 786432, 7048192, 15663360, 6722816, 11824384, 150820608, 544475232, 518329776, 56581525, 184549376, 3208396800, 17388675072, 30117189632, 11100235520, 2966845440
Offset: 0
Triangle starts:
n\g [0] [1] [2] [3] [4]
[0] 1;
[1] 4, 1;
[2] 32, 28;
[3] 336, 664, 105;
[4] 4096, 14912, 8112;
[5] 54912, 326496, 396792, 50050;
[6] 786432, 7048192, 15663360, 6722816;
[7] 11824384, 150820608, 544475232, 518329776, 56581525;
[8] 184549376, 3208396800, 17388675072, 30117189632, 11100235520;
[9] ...
- Gheorghe Coserea, Rows n = 0..200, flattened
- Edward A. Bender, Zhicheng Gao, L. Bruce Richmond, The map asymptotics constant tg, The Electronic Journal of Combinatorics, Volume 15 (2008), Research Paper #R51.
- Zhicheng Gao, A Formula for the Bivariate Map Asymptotics Constants in terms of the Univariate Map Asymptotics Constants, The Electronic Journal of Combinatorics, Volume 17 (2010), Research Paper #R155.
- I. P. Goulden and D. M. Jackson, The KP hierarchy, branched covers, and triangulations, Advances in Mathematics, Volume 219, Issue 3, 20 October 2008, Pages 932-951.
-
T[n_ /; n >= 0, g_] /; 0 <= g <= (n+1)/2 := f[n, g]/(3n+2); T[, ] = 0; f[n_ /; n >= 1, g_ /; g >= 0] := f[n, g] = 4*(3*n+2)/(n+1)*(n*(3*n-2)*f[n - 2, g-1] + Sum[f[i, h]*f[n-2-i, g-h], {i, -1, n-1}, {h, 0, g}]); f[-1, 0] = 1/2; f[0, 0] = 2; f[, ] = 0; Table[Table[T[n, g], {g, 0, Floor[(n + 1)/2]}], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 27 2016 *)
-
N = 10;
m = matrix(N+2, N+2);
mget(n,g) = {
if (g < 0 || g > (n+1)/2, return(0));
return(m[n+2,g+1]);
}
mset(n,g,v) = {
m[n+2,g+1] = v;
}
Cubic() = {
mset(-1,0,1/2);
mset(0,0,2);
for (n = 1, N,
for (g = 0, (n+1)\2,
my(t1 = n * (3*n-2) * mget(n-2, g-1),
t2 = sum(i = -1, n-1, sum(h = 0, g,
mget(i,h) * mget(n-2-i, g-h))));
mset(n, g, 4*(3*n+2)/(n+1) * (t1 + t2))));
my(a = vector(N+1));
for (n = 0, N,
a[n+1] = vector(1 + (n+1)\2);
for (g = 0, (n+1)\2,
a[n+1][g+1] = mget(n, g));
a[n+1] = a[n+1]/(3*n+2));
return(a);
}
concat(Cubic())
A278120
a(n) is numerator of rational z(n) associated with the non-orientable map asymptotics constant p((n+1)/2).
Original entry on oeis.org
-1, 1, 5, 25, 1033, 15745, 1599895, 12116675, 1519810267, 5730215335, 2762191322225, 155865304045375, 275016025098532093, 129172331662700995, 358829725148742321475, 524011363178245785875, 10072731258491333905209253, 1181576300858987307102335, 68622390512340213600239902775
Offset: 0
For n=2 we have p(3/2) = 4 * (5/144) * (3/2)^(3/2) / gamma(9/4) = 2/(sqrt(6)*gamma(1/4)).
For n=4 we have p(5/2) = 4 * (1033/27648) * (3/2)^(5/2) / gamma(19/4) = 1033/(13860*sqrt(6)*gamma(3/4)).
n z(n) p((n+1)/2)
0 -1 3/(sqrt(6)*gamma(3/4))
1 1/12 1/2
2 5/144 2/(sqrt(6)*gamma(1/4))
3 25/864 5/(36*sqrt(Pi))
4 1033/27684 1033/(13860*sqrt(6)*gamma(3/4))
5 15745/248832 3149/442368
6 1599895/11943936 319979/(18796050*sqrt(6)*gamma(1/4))
7 12116675/35831808 484667/(560431872*sqrt(Pi))
8 1519810267/1528823808 1519810267/(4258429005600*sqrt(6)*gamma(3/4))
9 5730215335/1719926784 1146043067/41094783959040
...
-
A269418_seq(N) = {
my(y = vector(N)); y[1] = 1/48;
for (n = 2, N,
y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
concat(-1, y);
};
seq(N) = {
my(y = A269418_seq(N), z = vector(N)); z[1] = 1/12;
for (n = 2, N,
my(t1 = if(n%2, 0, y[1+n\2]/3^(n\2)),
t2 = sum(k=1, n-1, z[k]*z[n-k]));
z[n] = (t1 + (5*n-6)/6 * z[n-1] + t2)/2);
concat(-1, z);
};
apply(numerator, seq(18))
A278121
a(n) is denominator of rational z(n) associated with the non-orientable map asymptotics constant p((n+1)/2).
Original entry on oeis.org
1, 12, 144, 864, 27648, 248832, 11943936, 35831808, 1528823808, 1719926784, 220150628352, 2972033482752, 1141260857376768, 106993205379072, 54780521154084864, 13695130288521216, 42071440246337175552, 739537035580145664, 6058287395472553279488
Offset: 0
For n=3 we have p(2) = 4 * (25/864) * (3/2)^2 / gamma(7/2) = 5/(36*sqrt(Pi)).
For n=5 we have p(3) = 4 * (15745/248832)*(3/2)^3/gamma(6) = 3149/442368.
n z(n) p((n+1)/2)
0 -1 3/(sqrt(6)*gamma(3/4))
1 1/12 1/2
2 5/144 2/(sqrt(6)*gamma(1/4))
3 25/864 5/(36*sqrt(Pi))
4 1033/27684 1033/(13860*sqrt(6)*gamma(3/4))
5 15745/248832 3149/442368
6 1599895/11943936 319979/(18796050*sqrt(6)*gamma(1/4))
7 12116675/35831808 484667/(560431872*sqrt(Pi))
8 1519810267/1528823808 1519810267/(4258429005600*sqrt(6)*gamma(3/4))
9 5730215335/1719926784 1146043067/41094783959040
...
-
A269418_seq(N) = {
my(y = vector(N)); y[1] = 1/48;
for (n = 2, N,
y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
concat(-1, y);
};
seq(N) = {
my(y = A269418_seq(N), z = vector(N)); z[1] = 1/12;
for (n = 2, N,
my(t1 = if(n%2, 0, y[1+n\2]/3^(n\2)),
t2 = sum(k=1, n-1, z[k]*z[n-k]));
z[n] = (t1 + (5*n-6)/6 * z[n-1] + t2)/2);
concat(-1, z);
};
apply(denominator, seq(18))
A278178
a(n) is the numerator of intersection number , n>=2.
Original entry on oeis.org
7, 1225, 1816871, 7723802625, 8591613499103635, 23107999588635836875, 446563431744711553183786875, 17418085137491657842253233328125, 1311214792748795041469921338623972253125, 169160593483166517029276275055903719700625000, 9261817633933021190882924368962406588490587588265625
Offset: 2
7/240, 1225/144, 1816871/48, 7723802625/8, 8591613499103635/96, ...
- Gheorghe Coserea, Table of n, a(n) for n = 2..101
- Stavros Garoufalidis, Marcos Marino, Universality and asymptotics of graph counting problems in nonorientable surfaces, arXiv:0812.1195 [math.CO], 2008.
- C. Itzykson, J.-B. Zuber, Combinatorics of the Modular Group II: the Kontsevich integrals, arXiv:hep-th/9201001, 1991.
-
A269418_seq(N) = {
my(y = vector(N)); y[1] = 1/48;
for (n = 2, N,
y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
concat(-1, y);
};
seq(N) = {
my(y = A269418_seq(N+2));
vector(N, g, (3*g)! * 4^(g+1) / ((5*g)*(5*g+2)) * y[g+2]);
};
apply(numerator, seq(12))
A278179
a(n) is the denominator of intersection number , n>=2.
Original entry on oeis.org
240, 144, 48, 8, 96, 1, 32, 1, 32, 1, 8, 1, 16, 1, 64, 1, 32, 1, 32, 1, 64, 1, 16, 1, 16, 1, 8, 1, 16, 1, 128, 1, 32, 1, 32, 1, 64, 1, 64, 1, 64, 1, 4, 1, 8, 1, 32, 1, 16, 1, 16, 1, 32, 1, 16, 1, 16, 1, 8, 1, 16, 1, 256, 1, 32, 1, 32, 1, 64, 1, 64, 1, 64, 1, 16, 1, 32, 1, 128, 1, 64, 1, 64, 1, 128
Offset: 2
7/240, 1225/144, 1816871/48, 7723802625/8, 8591613499103635/96, ...
- Gheorghe Coserea, Table of n, a(n) for n = 2..1025
- Stavros Garoufalidis, Marcos Marino, Universality and asymptotics of graph counting problems in nonorientable surfaces, arXiv:0812.1195 [math.CO], 2008.
- C. Itzykson, J.-B. Zuber, Combinatorics of the Modular Group II: the Kontsevich integrals, arXiv:hep-th/9201001, 1991.
-
A269418_seq(N) = {
my(y = vector(N)); y[1] = 1/48;
for (n = 2, N,
y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
concat(-1, y);
};
seq(N) = {
my(y = A269418_seq(N+2));
vector(N, g, (3*g)! * 4^(g+1) / ((5*g)*(5*g+2)) * y[g+2]);
};
apply(denominator, seq(85))
Showing 1-8 of 8 results.
Comments