cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A269919 Triangle read by rows: T(n,g) is the number of rooted maps with n edges on an orientable surface of genus g.

Original entry on oeis.org

1, 2, 9, 1, 54, 20, 378, 307, 21, 2916, 4280, 966, 24057, 56914, 27954, 1485, 208494, 736568, 650076, 113256, 1876446, 9370183, 13271982, 5008230, 225225, 17399772, 117822512, 248371380, 167808024, 24635754, 165297834, 1469283166, 4366441128
Offset: 0

Views

Author

Gheorghe Coserea, Mar 07 2016

Keywords

Comments

Row n contains floor((n+2)/2) terms.
Equivalently, T(n,g) is the number of rooted bipartite quadrangulations with n faces of an orientable surface of genus g.

Examples

			Triangle starts:
n\g    [0]          [1]          [2]          [3]          [4]
[0]    1;
[1]    2;
[2]    9,           1;
[3]    54,          20;
[4]    378,         307,         21;
[5]    2916,        4280,        966;
[6]    24057,       56914,       27954,       1485;
[7]    208494,      736568,      650076,      113256;
[8]    1876446,     9370183,     13271982,    5008230,     225225;
[9]    17399772,    117822512,   248371380,   167808024,   24635754;
[10]   ...
		

Crossrefs

Same as A238396 except for the zeros.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g<0 || g>n/2 = 0; T[n_, g_] := T[n, g] = ((4n-2)/ 3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n-k)- 1) T[k-1, i] T[n-k-1, g-i], {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
    Table[T[n, g], {n, 0, 10}, {g, 0, n/2}] // Flatten (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    N = 9; gmax(n) = n\2;
    Q = matrix(N+1, N+1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, N, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric();
    concat(vector(N+1, n, vector(1 + gmax(n-1), g, Qget(n-1, g-1))))

Formula

(n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.

A238396 Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 0, 9, 1, 0, 54, 20, 0, 0, 378, 307, 21, 0, 0, 2916, 4280, 966, 0, 0, 0, 24057, 56914, 27954, 1485, 0, 0, 0, 208494, 736568, 650076, 113256, 0, 0, 0, 0, 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0, 17399772, 117822512, 248371380, 167808024, 24635754, 0, 0, 0, 0, 0, 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0
Offset: 0

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Examples

			Triangle starts:
00: 1,
01: 2, 0,
02: 9, 1, 0,
03: 54, 20, 0, 0,
04: 378, 307, 21, 0, 0,
05: 2916, 4280, 966, 0, 0, 0,
06: 24057, 56914, 27954, 1485, 0, 0, 0,
07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
...
		

References

  • David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.

Crossrefs

Sum of row n is A000698(n+1).
See A267180 for nonorientable analog.
The triangle without the zeros is A269919.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
    Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Gheorghe Coserea *)
  • PARI
    N=20;
    MEM=matrix(N+1,N+1, r,c, -1);  \\ for memoization
    Q(n,g)=
    {
        if (n<0,  return( (g<=0) ) ); \\ not given in paper
        if (g<0,  return( 0 ) ); \\ not given in paper
        if (n<=0, return( g==0 ) );  \\ as in paper
        my( m = MEM[n+1,g+1] );
        if ( m != -1,  return(m) );  \\ memoized value
        my( t=0 );
        t += (4*n-2)/3 * Q(n-1, g);
        t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
        my(l, j);
        t += 1/2*
            sum(k=1, n-1, l=n-k;  \\ l+k == n, both >= 1
                sum(i=0, g, j=g-i;  \\ i+j == g, both >= 0
                    (2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
                );
            );
        t *= 6/(n+1);
        MEM[n+1, g+1] = t;  \\ memoize
        return(t);
    }
    for (n=0, N, for (g=0, n, print1(Q(n, g),", "); );  print(); ); /* print triangle */

Formula

From Gheorghe Coserea, Mar 11 2016: (Start)
(n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.
(End)

A269418 a(n) is numerator of y(n), where y(n+1) = (25*n^2-1)/48 * y(n) + (1/2)*Sum_{k=1..n}y(k)*y(n+1-k), with y(0) = -1.

Original entry on oeis.org

-1, 1, 49, 1225, 4412401, 73560025, 245229441961, 7759635184525, 2163099334469560445, 243352176577765537625, 126154825844683612669806743, 307996788703417873806157775, 3816216508144039222348410175181221, 4472139245793702477426700875742975
Offset: 0

Views

Author

Gheorghe Coserea, Feb 25 2016

Keywords

Examples

			For n=0 we have t(0) = (-1) / (2^(-2)*gamma(-1/2)) = 2/sqrt(Pi).
For n=1 we have t(1) = (1/48) / (2^(-1)*gamma(2))  = 1/24.
n   y(n)                        t(n)
0   -1                          2/sqrt(Pi)
1   1/48                        1/24
2   49/4608                     7/(4320*sqrt(Pi))
3   1225/55296                  245/15925248
4   4412401/42467328            37079/(96074035200*sqrt(Pi))
5   73560025/84934656           38213/14089640214528
6   245229441961/21743271936    5004682489/(92499927372103680000*sqrt(Pi))
7   7759635184525/36691771392   6334396069/20054053184087387013120
...
		

Crossrefs

Cf. A266240, A269419 (denominator).

Programs

  • Mathematica
    y[0] = -1;
    y[n_] := y[n] = (25(n-1)^2-1)/48 y[n-1] + 1/2 Sum[y[k] y[n-k], {k, 1, n-1}];
    Table[y[n] // Numerator, {n, 0, 13}] (* Jean-François Alcover, Oct 23 2018 *)
  • PARI
    seq(n) = {
      my(y  = vector(n));
      y[1] = 1/48;
      for (g = 1, n-1,
           y[g+1] = (25*g^2-1)/48 * y[g] + 1/2*sum(k = 1, g, y[k]*y[g+1-k]));
      return(concat(-1,y));
    }
    apply(numerator, seq(13))

Formula

t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)), where t(g) is the orientable map asymptotics constant and gamma is the Gamma function.

A266240 Triangle read by rows: T(n,g) is the number of rooted 2n-face triangulations in an orientable surface of genus g.

Original entry on oeis.org

1, 4, 1, 32, 28, 336, 664, 105, 4096, 14912, 8112, 54912, 326496, 396792, 50050, 786432, 7048192, 15663360, 6722816, 11824384, 150820608, 544475232, 518329776, 56581525, 184549376, 3208396800, 17388675072, 30117189632, 11100235520, 2966845440
Offset: 0

Views

Author

Gheorghe Coserea, Dec 25 2015

Keywords

Comments

Row n contains floor((n+3)/2) terms.

Examples

			Triangle starts:
n\g    [0]          [1]          [2]          [3]          [4]
[0]    1;
[1]    4,           1;
[2]    32,          28;
[3]    336,         664,         105;
[4]    4096,        14912,       8112;
[5]    54912,       326496,      396792,      50050;
[6]    786432,      7048192,     15663360,    6722816;
[7]    11824384,    150820608,   544475232,   518329776,   56581525;
[8]    184549376,   3208396800,  17388675072, 30117189632, 11100235520;
[9]    ...
		

Crossrefs

Columns k=0-4 give: A002005, A269473, A269474, A269475, A269476.
Row sums give A062980.

Programs

  • Mathematica
    T[n_ /; n >= 0, g_] /; 0 <= g <= (n+1)/2 := f[n, g]/(3n+2); T[, ] = 0; f[n_ /; n >= 1, g_ /; g >= 0] := f[n, g] = 4*(3*n+2)/(n+1)*(n*(3*n-2)*f[n - 2, g-1] + Sum[f[i, h]*f[n-2-i, g-h], {i, -1, n-1}, {h, 0, g}]); f[-1, 0] = 1/2; f[0, 0] = 2; f[, ] = 0; Table[Table[T[n, g], {g, 0, Floor[(n + 1)/2]}], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 27 2016 *)
  • PARI
    N = 10;
    m = matrix(N+2, N+2);
    mget(n,g) = {
      if (g < 0 || g > (n+1)/2, return(0));
      return(m[n+2,g+1]);
    }
    mset(n,g,v) = {
      m[n+2,g+1] = v;
    }
    Cubic() = {
      mset(-1,0,1/2);
      mset(0,0,2);
      for (n = 1, N,
      for (g = 0, (n+1)\2,
        my(t1 = n * (3*n-2) * mget(n-2, g-1),
           t2 = sum(i = -1, n-1, sum(h = 0, g,
                    mget(i,h) * mget(n-2-i, g-h))));
        mset(n, g, 4*(3*n+2)/(n+1) * (t1 + t2))));
      my(a = vector(N+1));
      for (n = 0, N,
        a[n+1] = vector(1 + (n+1)\2);
        for (g = 0, (n+1)\2,
             a[n+1][g+1] = mget(n, g));
        a[n+1] = a[n+1]/(3*n+2));
      return(a);
    }
    concat(Cubic())

Formula

T(n,g) = f(n,g)/(3*n+2) for all n >= 0 and 0 <= g <= (n+1)/2, where f(n,g) satisfies the quadratic recurrence equation f(n,g) = 4*(3*n+2)/(n+1)*(n*(3*n-2)*f(n-2,g-1) + Sum_{i=-1..n-1} Sum_{h=0..g} f(i,h)*f(n-2-i, g-h)) for n >= 1 and g >= 0 with the initial conditions f(-1,0)=1/2, f(0,0)=2 and f(n,g)=0 for g < 0 or g > (n+1)/2.
For column g, as n goes to infinity we have T(n,g) ~ 3*6^((g-1)/2) * t(g) * n^(5*(g-1)/2) * (12*sqrt(3))^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function. - Gheorghe Coserea, Feb 26 2016

A278120 a(n) is numerator of rational z(n) associated with the non-orientable map asymptotics constant p((n+1)/2).

Original entry on oeis.org

-1, 1, 5, 25, 1033, 15745, 1599895, 12116675, 1519810267, 5730215335, 2762191322225, 155865304045375, 275016025098532093, 129172331662700995, 358829725148742321475, 524011363178245785875, 10072731258491333905209253, 1181576300858987307102335, 68622390512340213600239902775
Offset: 0

Views

Author

Gheorghe Coserea, Nov 12 2016

Keywords

Examples

			For n=2 we have p(3/2) = 4 * (5/144) * (3/2)^(3/2) / gamma(9/4) = 2/(sqrt(6)*gamma(1/4)).
For n=4 we have p(5/2) = 4 * (1033/27648) * (3/2)^(5/2) / gamma(19/4) = 1033/(13860*sqrt(6)*gamma(3/4)).
n   z(n)                   p((n+1)/2)
0   -1                     3/(sqrt(6)*gamma(3/4))
1   1/12                   1/2
2   5/144                  2/(sqrt(6)*gamma(1/4))
3   25/864                 5/(36*sqrt(Pi))
4   1033/27684             1033/(13860*sqrt(6)*gamma(3/4))
5   15745/248832           3149/442368
6   1599895/11943936       319979/(18796050*sqrt(6)*gamma(1/4))
7   12116675/35831808      484667/(560431872*sqrt(Pi))
8   1519810267/1528823808  1519810267/(4258429005600*sqrt(6)*gamma(3/4))
9   5730215335/1719926784  1146043067/41094783959040
...
		

Crossrefs

Cf. A269418, A269419, A278121 (denominator).

Programs

  • PARI
    A269418_seq(N) = {
      my(y  = vector(N)); y[1] = 1/48;
      for (n = 2, N,
           y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
      concat(-1, y);
    };
    seq(N) = {
      my(y = A269418_seq(N), z = vector(N)); z[1] = 1/12;
      for (n = 2, N,
           my(t1 = if(n%2, 0, y[1+n\2]/3^(n\2)),
              t2 = sum(k=1, n-1, z[k]*z[n-k]));
          z[n] = (t1 + (5*n-6)/6 * z[n-1] + t2)/2);
      concat(-1, z);
    };
    apply(numerator, seq(18))

Formula

a(n) = numerator(z(n)), where z(n) = 1/2 * (y(n/2)/3^(n/2) + (5*n-6)/6 * z(n-1) + Sum {k=1..n-1} z(k)*z(n-k)), with z(0) = -1, y(n) = A269418(n)/A269419(n) and y(n+1/2) = 0 for all n.
p((n+1)/2) = 4 * (A278120(n)/A278121(n)) * (3/2)^((n+1)/2) / gamma((5*n-1)/4), where p((n+1)/2) is the non-orientable map asymptotics constant for type g=(n+1)/2 and gamma is the Gamma function.

A278121 a(n) is denominator of rational z(n) associated with the non-orientable map asymptotics constant p((n+1)/2).

Original entry on oeis.org

1, 12, 144, 864, 27648, 248832, 11943936, 35831808, 1528823808, 1719926784, 220150628352, 2972033482752, 1141260857376768, 106993205379072, 54780521154084864, 13695130288521216, 42071440246337175552, 739537035580145664, 6058287395472553279488
Offset: 0

Views

Author

Gheorghe Coserea, Nov 12 2016

Keywords

Examples

			For n=3 we have p(2) = 4 * (25/864) * (3/2)^2 / gamma(7/2) = 5/(36*sqrt(Pi)).
For n=5 we have p(3) = 4 * (15745/248832)*(3/2)^3/gamma(6) = 3149/442368.
n   z(n)                   p((n+1)/2)
0   -1                     3/(sqrt(6)*gamma(3/4))
1   1/12                   1/2
2   5/144                  2/(sqrt(6)*gamma(1/4))
3   25/864                 5/(36*sqrt(Pi))
4   1033/27684             1033/(13860*sqrt(6)*gamma(3/4))
5   15745/248832           3149/442368
6   1599895/11943936       319979/(18796050*sqrt(6)*gamma(1/4))
7   12116675/35831808      484667/(560431872*sqrt(Pi))
8   1519810267/1528823808  1519810267/(4258429005600*sqrt(6)*gamma(3/4))
9   5730215335/1719926784  1146043067/41094783959040
...
		

Crossrefs

Cf. A269418, A269419, A278120 (numerator).

Programs

  • PARI
    A269418_seq(N) = {
      my(y  = vector(N)); y[1] = 1/48;
      for (n = 2, N,
           y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
      concat(-1, y);
    };
    seq(N) = {
      my(y = A269418_seq(N), z = vector(N)); z[1] = 1/12;
      for (n = 2, N,
           my(t1 = if(n%2, 0, y[1+n\2]/3^(n\2)),
              t2 = sum(k=1, n-1, z[k]*z[n-k]));
          z[n] = (t1 + (5*n-6)/6 * z[n-1] + t2)/2);
      concat(-1, z);
    };
    apply(denominator, seq(18))

Formula

a(n) = denominator(z(n)), where z(n) = 1/2 * (y(n/2)/3^(n/2) + (5*n-6)/6 * z(n-1) + Sum {k=1..n-1} z(k)*z(n-k)), with z(0) = -1, y(n) = A269418(n)/A269419(n) and y(n+1/2) = 0 for all n.
p((n+1)/2) = 4 * (A278120(n)/A278121(n)) * (3/2)^((n+1)/2) / gamma((5*n-1)/4), where p((n+1)/2) is the non-orientable map asymptotics constant for type g=(n+1)/2 and gamma is the Gamma function.

A278178 a(n) is the numerator of intersection number , n>=2.

Original entry on oeis.org

7, 1225, 1816871, 7723802625, 8591613499103635, 23107999588635836875, 446563431744711553183786875, 17418085137491657842253233328125, 1311214792748795041469921338623972253125, 169160593483166517029276275055903719700625000, 9261817633933021190882924368962406588490587588265625
Offset: 2

Views

Author

Gheorghe Coserea, Nov 13 2016

Keywords

Comments

For 'intersection numbers' see Section 1 in Itzykson and Zuber paper.

Examples

			7/240, 1225/144, 1816871/48, 7723802625/8, 8591613499103635/96, ...
		

Crossrefs

Cf. A269418, A269419, A278179 (denominator).

Programs

  • PARI
    A269418_seq(N) = {
      my(y  = vector(N)); y[1] = 1/48;
      for (n = 2, N,
           y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
      concat(-1, y);
    };
    seq(N) = {
      my(y = A269418_seq(N+2));
      vector(N, g, (3*g)! * 4^(g+1) / ((5*g)*(5*g+2)) * y[g+2]);
    };
    apply(numerator, seq(12))

Formula

a(n) = numerator((3*n-3)!*4^n/((5*n-5)*(5*n-3)) * A269418(n)/A269419(n)) for n >= 2.

A278179 a(n) is the denominator of intersection number , n>=2.

Original entry on oeis.org

240, 144, 48, 8, 96, 1, 32, 1, 32, 1, 8, 1, 16, 1, 64, 1, 32, 1, 32, 1, 64, 1, 16, 1, 16, 1, 8, 1, 16, 1, 128, 1, 32, 1, 32, 1, 64, 1, 64, 1, 64, 1, 4, 1, 8, 1, 32, 1, 16, 1, 16, 1, 32, 1, 16, 1, 16, 1, 8, 1, 16, 1, 256, 1, 32, 1, 32, 1, 64, 1, 64, 1, 64, 1, 16, 1, 32, 1, 128, 1, 64, 1, 64, 1, 128
Offset: 2

Views

Author

Gheorghe Coserea, Nov 13 2016

Keywords

Comments

For 'intersection numbers' see Section 1 in Itzykson and Zuber paper.

Examples

			7/240, 1225/144, 1816871/48, 7723802625/8, 8591613499103635/96, ...
		

Crossrefs

Cf. A269418, A269419, A278178 (numerator).

Programs

  • PARI
    A269418_seq(N) = {
      my(y  = vector(N)); y[1] = 1/48;
      for (n = 2, N,
           y[n] = (25*(n-1)^2-1)/48 * y[n-1] + 1/2*sum(k = 1, n-1, y[k]*y[n-k]));
      concat(-1, y);
    };
    seq(N) = {
      my(y = A269418_seq(N+2));
      vector(N, g, (3*g)! * 4^(g+1) / ((5*g)*(5*g+2)) * y[g+2]);
    };
    apply(denominator, seq(85))

Formula

a(n) = denominator((3*n-3)!*4^n/((5*n-5)*(5*n-3)) * A269418(n)/A269419(n)) for n >= 2.
Showing 1-8 of 8 results.