cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A294161 Column 1 of triangle A291844.

Original entry on oeis.org

2, 23, 292, 4068, 62861, 1075562, 20275944, 418724047, 9418874022, 229535650138, 6029910590473, 169978358728536, 5120224516689050, 164192864744507615, 5585978669387706724, 200988595873323113508, 7626780547253339197109, 304431018444668653351250, 12752396616363975496913952, 559388848572350998030227895
Offset: 2

Views

Author

Gheorghe Coserea, Nov 04 2017

Keywords

Crossrefs

Cf. A291844.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1; ); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1, t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    A291844_kol(k, N=20) = {
      my(s = A291844_ser(N+1+3*k\2, t='t + O('t^(k+1))));
      Ser(polcoeff(s, k,'t), 'x, N);
    };
    Vec(A291844_kol(1))

A294160 Column 0 of triangle A291844.

Original entry on oeis.org

1, 1, 4, 29, 274, 3145, 42294, 651227, 11295242, 217954807, 4632600152, 107572674851, 2710093290348, 73635362430373, 2146667383237600, 66842659455306545, 2214207331808233390, 77752904712525291757, 2885163506590219810722, 112808263228714108970879
Offset: 0

Views

Author

Gheorghe Coserea, Nov 03 2017

Keywords

Crossrefs

Cf. A291844.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1; ); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1, t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    A291844_kol(k, N=20) = {
      my(s = A291844_ser(N+1+3*k\2, t='t + O('t^(k+1))));
      Ser(polcoeff(s, k,'t), 'x, N);
    };
    Vec(A291844_kol(0))

A294159 Alternating row sums of triangle A291844.

Original entry on oeis.org

1, 1, 2, 6, 18, 55, 171, 538, 1708, 5461, 17560, 56728, 183973, 598597, 1953145, 6388376, 20939664, 68764283, 226192964, 745146462, 2458020664, 8118111977, 26841209903, 88835163150, 294284206183, 975699571009, 3237456793478, 10749922312752, 35718863630895, 118757413662397
Offset: 0

Views

Author

Gheorghe Coserea, Nov 03 2017

Keywords

Crossrefs

Cf. A291844.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1; ); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1, t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    Vec(A291844_ser(30,-1))
    \\ test: y=A291844_ser(200,-1); 0==(x^3 + x^2 + 3*x - 1)*(y^2 - y) + x

Formula

G.f. y(x) satisfies: 0 = (x^3 + x^2 + 3*x - 1)*(y^2 - y) + x.
Conjecture: D-finite with recurrence n*a(n) +(-3*n+1)*a(n-1) +2*(-n+3)*a(n-2) +2*(n-5)*a(n-3) +(n-4)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Jun 17 2020

A294158 Row sums of A291844.

Original entry on oeis.org

1, 1, 6, 52, 602, 8223, 128917, 2273716, 44509914, 957408649, 22449011336, 570032756328, 15587503694363, 456793916757139, 14284890417759141, 474896318288651220, 16726743380843538668, 622282429409944248297, 24385251974172090147514, 1004017088910699487855180
Offset: 0

Views

Author

Gheorghe Coserea, Oct 24 2017

Keywords

Crossrefs

Cf. A049464(y), A287039(x), A286799(z), A287029(u), A291844.

Programs

  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1,t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    Vec(A291844_ser(20,t=1))

Formula

a(n) = Sum_{k=0..floor((2*n-1)/3)} A291844(n,k), n > 0.

A294162 Column 2 of triangle A291844.

Original entry on oeis.org

36, 994, 22250, 484840, 10867381, 255929070, 6387031115, 169414005231, 4777275646776, 143057565908871, 4541154155493688, 152488745763476252, 5404684397262874216, 201748737356125542014, 7914700977349228045674, 325655486028026921305660, 14026432243484139930962641
Offset: 4

Views

Author

Gheorghe Coserea, Nov 04 2017

Keywords

Crossrefs

Cf. A291844.

Programs

A294163 Column 3 of triangle A291844.

Original entry on oeis.org

16, 1512, 61027, 1977879, 59896915, 1798212190, 55017177704, 1739482570960, 57241033706778, 1967360177317667, 70726834072581710, 2660291453079577988, 104649959742336160214, 4301893149042476310366, 184602995065735203985103, 8259869062587590267542009
Offset: 5

Views

Author

Gheorghe Coserea, Nov 04 2017

Keywords

Crossrefs

Cf. A291844.

Programs

A294164 Column 4 of triangle A291844.

Original entry on oeis.org

1060, 93188, 4823178, 204846125, 8022471066, 305667271592, 11651731789016, 451346936260628, 17927636436397970, 734017001257664973, 31071283511443877004, 1362000990986799549562, 61869212148399394596802, 2912865281703456822415389, 142110906105976971777192795
Offset: 7

Views

Author

Gheorghe Coserea, Nov 04 2017

Keywords

Crossrefs

Cf. A291844.

Programs

A294165 Column 5 of triangle A291844.

Original entry on oeis.org

280, 80632, 7410676, 463514918, 24354193306, 1176805502077, 54779467419573, 2521693624670686, 116608886612461865, 5469515777624179350, 261820716271863054307, 12840622327949419468935, 646781612549311635240576, 33509445393370481956717460, 1787245829075731173749806216
Offset: 8

Views

Author

Gheorghe Coserea, Nov 05 2017

Keywords

Crossrefs

Cf. A291844.

Programs

Showing 1-8 of 8 results.