cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A291844 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 1, 4, 2, 29, 23, 274, 292, 36, 3145, 4068, 994, 16, 42294, 62861, 22250, 1512, 651227, 1075562, 484840, 61027, 1060, 11295242, 20275944, 10867381, 1977879, 93188, 280, 217954807, 418724047, 255929070, 59896915, 4823178, 80632, 4632600152, 9418874022, 6387031115, 1798212190, 204846125, 7410676, 37056, 107572674851, 229535650138, 169414005231, 55017177704, 8022471066, 463514918, 7255380, 7040
Offset: 0

Views

Author

Gheorghe Coserea, Oct 24 2017

Keywords

Comments

Row n>0 contains floor((2*n+2)/3) terms.

Examples

			A(x;t) = 1 + x + (4 + 2*t)*x^2 + (29 + 23*t)*x^3 + (274 + 292*t + 36*t^2)*x^4 + ...
Triangle starts:
n\k  [0]        [1]        [2]        [3]       [4]      [5]
[0]  1;
[1]  1;
[2]  4,         2;
[3]  29,        23;
[4]  274,       292,       36;
[5]  3145,      4068,      994,       16;
[6]  42294,     62861,     22250,     1512;
[7]  651227,    1075562,   484840,    61027,    1060;
[8]  11295242,  20275944,  10867381,  1977879,  93188,   280;
[9]  217954807, 418724047, 255929070, 59896915, 4823178, 80632;
[10] ...
		

Crossrefs

Columns k=0..5 give A294160 (k=0), A294161 (k=1), A294162 (k=2), A294163 (k=3), A294164 (k=4), A294165 (k=5).

Programs

  • Mathematica
    m = maxExponent = 13; Z[_] = 0;
    Do[Z[t_] = -(((1 - l + l (1+t) Z[t]) (-((t Z[t])/(1 + l t)) - (1 - t - 2 l t^2)/(1 - l + l (1+t) Z[t]) - 2 t^2 Z'[t]))/((1+t) (1 - t - 2 l t^2))) + O[t]^m // Normal // Simplify, {m}];
    gamma[t_] = ((1 + l t)(-1 + Z[t] + t Z[t]))/(Z[t]^2 (t + l t (-1 + Z[t] + t Z[t]))) + O[t]^m // Normal // Simplify;
    CoefficientList[# + O[l]^m, l]& /@ Most @ CoefficientList[gamma[t], t] // Flatten (* Jean-François Alcover, Nov 17 2018 *)
  • PARI
    A291843_ser(N, t='t) = {
      my(x='x+O('x^N), y=1, y1=0, n=1,
      dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
      while (n++,
       y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
            (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
       if (y1 == y, break); y = y1;); y;
    };
    A291844_ser(N, t='t) = {
      my(z = A291843_ser(N+1,t));
      ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
    };
    concat(apply(p->Vecrev(p), Vec(A291844_ser(12))))

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y = ((1+x)*z - 1) * (1 + t*x)/((1-t + t*(1+x)*z)*x*z^2), where z = A291843(x;t) and P_n(t) = Sum_{k=0..floor((2*n-1)/3)} T(n,k)*t^k for n > 0.
A294158(n) = P_n(1), A294159(n)=P_n(-1), A294160(n)=P_n(0).

A294162 Column 2 of triangle A291844.

Original entry on oeis.org

36, 994, 22250, 484840, 10867381, 255929070, 6387031115, 169414005231, 4777275646776, 143057565908871, 4541154155493688, 152488745763476252, 5404684397262874216, 201748737356125542014, 7914700977349228045674, 325655486028026921305660, 14026432243484139930962641
Offset: 4

Views

Author

Gheorghe Coserea, Nov 04 2017

Keywords

Crossrefs

Cf. A291844.

Programs

A294163 Column 3 of triangle A291844.

Original entry on oeis.org

16, 1512, 61027, 1977879, 59896915, 1798212190, 55017177704, 1739482570960, 57241033706778, 1967360177317667, 70726834072581710, 2660291453079577988, 104649959742336160214, 4301893149042476310366, 184602995065735203985103, 8259869062587590267542009
Offset: 5

Views

Author

Gheorghe Coserea, Nov 04 2017

Keywords

Crossrefs

Cf. A291844.

Programs

A294164 Column 4 of triangle A291844.

Original entry on oeis.org

1060, 93188, 4823178, 204846125, 8022471066, 305667271592, 11651731789016, 451346936260628, 17927636436397970, 734017001257664973, 31071283511443877004, 1362000990986799549562, 61869212148399394596802, 2912865281703456822415389, 142110906105976971777192795
Offset: 7

Views

Author

Gheorghe Coserea, Nov 04 2017

Keywords

Crossrefs

Cf. A291844.

Programs

A294165 Column 5 of triangle A291844.

Original entry on oeis.org

280, 80632, 7410676, 463514918, 24354193306, 1176805502077, 54779467419573, 2521693624670686, 116608886612461865, 5469515777624179350, 261820716271863054307, 12840622327949419468935, 646781612549311635240576, 33509445393370481956717460, 1787245829075731173749806216
Offset: 8

Views

Author

Gheorghe Coserea, Nov 05 2017

Keywords

Crossrefs

Cf. A291844.

Programs

Showing 1-5 of 5 results.