A352236
G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 2*x*A'(x)).
Original entry on oeis.org
1, 1, 3, 19, 185, 2353, 36075, 638115, 12683761, 278485217, 6674259667, 173097575603, 4826128088489, 143896870347793, 4568544366818747, 153883892657000259, 5481761893234193889, 205939077652874352577, 8138639816942009694627, 337568614331296733526867
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 185*x^4 + 2353*x^5 + 36075*x^6 + 638115*x^7 + 12683761*x^8 + ...
such that A(x) = 1 + x*A(x)^2/(A(x) - 2*x*A'(x)).
Related table.
The table of coefficients of x^k in A(x)^(2*n+1) begins:
n=0: [1, 1, 3, 19, 185, 2353, 36075, ...];
n=1: [1, 3, 12, 76, 705, 8595, 127680, ...];
n=2: [1, 5, 25, 165, 1490, 17506, 252050, ...];
n=3: [1, 7, 42, 294, 2632, 30016, 419454, ...];
n=4: [1, 9, 63, 471, 4239, 47295, 643017, ...];
n=5: [1, 11, 88, 704, 6435, 70785, 939312, ...];
n=6: [1, 13, 117, 1001, 9360, 102232, 1329016, ...]; ...
in which the following pattern holds:
[x^n] A(x)^(2*n+1) = [x^(n-1)] (2*n+1) * A(x)^(2*n+1), n >= 1,
as illustrated by
[x^1] A(x)^3 = 3 = [x^0] 3*A(x)^3 = 3*1;
[x^2] A(x)^5 = 25 = [x^1] 5*A(x)^5 = 5*5;
[x^3] A(x)^7 = 294 = [x^2] 7*A(x)^7 = 7*42;
[x^4] A(x)^9 = 4239 = [x^3] 9*A(x)^9 = 9*471;
[x^5] A(x)^11 = 70785 = [x^4] 11*A(x)^11 = 11*6435;
[x^6] A(x)^13 = 1329016 = [x^5] 13*A(x)^13 = 13*102232; ...
Also, compare the above terms along the diagonal to the series
B(x) = A(x*B(x)^2) = 1 + x + 5*x^2 + 42*x^3 + 471*x^4 + 6435*x^5 + 102232*x^6 + 1837630*x^7 + ... + A317352(n)*x^n + ...
where B(x)^2 = (1/x) * Series_Reversion( x/A(x)^2 ).
-
/* Using A(x) = 1 + x*A(x)^2/(A(x) - 2*x*A'(x)) */
{a(n) = my(A=1); for(i=1,n, A = 1 + x*A^2/(A - 2*x*A' + x*O(x^n)) );
polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
-
/* Using [x^n] A(x)^(2*n+1) = [x^(n-1)] (2*n+1)*A(x)^(2*n+1) */
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff((x*Ser(A)^(2*(#A)-1) - Ser(A)^(2*(#A)-1)/(2*(#A)-1)),#A-1));A[n+1]}
for(n=0,30, print1(a(n),", "))
A352235
G.f. A(x) satisfies: A(x) = 1 + x*A(x) / (A(x) - 3*x*A'(x)).
Original entry on oeis.org
1, 1, 3, 24, 309, 5262, 108894, 2618718, 71246145, 2154788970, 71563126710, 2586270267600, 100995812044266, 4237522832234832, 190126298040192912, 9085093650185205498, 460711407231295513689, 24715373661154672634058, 1398648334415007990887454
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 24*x^3 + 309*x^4 + 5262*x^5 + 108894*x^6 + 2618718*x^7 + 71246145*x^8 + ...
such that A(x) = 1 + x*A(x)/(A(x) - 3*x*A'(x)).
Related table.
The table of coefficients of x^k in A(x)^(3*n+2) begins:
n=0: [1, 2, 7, 54, 675, 11286, 230742, ...];
n=1: [1, 5, 25, 190, 2210, 34981, 688635, ...];
n=2: [1, 8, 52, 416, 4642, 69872, 1322848, ...];
n=3: [1, 11, 88, 759, 8349, 120549, 2195886, ...];
n=4: [1, 14, 133, 1246, 13790, 193060, 3391017, ...];
n=5: [1, 17, 187, 1904, 21505, 295154, 5017618, ...];
n=6: [1, 20, 250, 2760, 32115, 436524, 7217250, ...]; ...
in which the following pattern holds:
[x^n] A(x)^(3*n+2) = [x^(n-1)] (3*n+2) * A(x)^(3*n+2), n >= 1,
as illustrated by
[x^1] A(x)^2 = 2 = [x^0] 2*A(x)^2 = 2*1;
[x^2] A(x)^5 = 25 = [x^1] 5*A(x)^5 = 5*5;
[x^3] A(x)^8 = 416 = [x^2] 8*A(x)^8 = 8*52;
[x^4] A(x)^11 = 8349 = [x^3] 11*A(x)^11 = 11*759;
[x^5] A(x)^14 = 193060 = [x^4] 14*A(x)^14 = 14*13790;
[x^6] A(x)^17 = 5017618 = [x^5] 17*A(x)^17 = 17*295154; ...
-
/* Using A(x) = 1 + x*A(x)/(A(x) - 3*x*A'(x)) */
{a(n) = my(A=1); for(i=1,n, A = 1 + x*A/(A - 3*x*A' + x*O(x^n)) );
polcoeff(A,n)}
for(n=0,20, print1(a(n),", "))
-
/* Using [x^n] A(x)^(3*n+2) = [x^(n-1)] (3*n+2)*A(x)^(3*n+2) */
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff((x*Ser(A)^(3*(#A-2)+2) - Ser(A)^(3*(#A-2)+2)/(3*(#A-2)+2)),#A-1));A[n+1]}
for(n=0,20, print1(a(n),", "))
A352237
G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 3*x*A'(x)).
Original entry on oeis.org
1, 1, 4, 37, 532, 9994, 226252, 5910445, 173581060, 5634589906, 199792389160, 7671942375898, 316936631324368, 14011781050744984, 660054967923455212, 33008607551445324157, 1746771084107236755604, 97536010045722766992778, 5731874036042145864368824
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 37*x^3 + 532*x^4 + 9994*x^5 + 226252*x^6 + 5910445*x^7 + 173581060*x^8 + ...
such that A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)).
Related table.
The table of coefficients of x^k in A(x)^(3*n+1) begins:
n=0: [1, 1, 4, 37, 532, 9994, 226252, ...];
n=1: [1, 4, 22, 200, 2717, 48788, 1069122, ...];
n=2: [1, 7, 49, 462, 6069, 104664, 2219784, ...];
n=3: [1, 10, 85, 850, 11020, 183832, 3777355, ...];
n=4: [1, 13, 130, 1391, 18083, 294203, 5869734, ...];
n=5: [1, 16, 184, 2112, 27852, 445632, 8659920, ...];
n=6: [1, 19, 247, 3040, 41002, 650161, 12353059, ...]; ...
in which the following pattern holds:
[x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1) * A(x)^(3*n+1), n >= 1,
as illustrated by
[x^1] A(x)^4 = 4 = [x^0] 4*A(x)^4 = 4*1;
[x^2] A(x)^7 = 49 = [x^1] 7*A(x)^7 = 7*7;
[x^3] A(x)^10 = 850 = [x^2] 10*A(x)^10 = 10*85;
[x^4] A(x)^13 = 18083 = [x^3] 13*A(x)^13 = 13*1391;
[x^5] A(x)^16 = 445632 = [x^4] 16*A(x)^16 = 16*27852;
[x^6] A(x)^19 = 12353059 = [x^5] 19*A(x)^19 = 19*650161; ...
Also, compare the above terms along the diagonal to the series
B(x) = A(x*B(x)^3) = 1 + x + 7*x^2 + 85*x^3 + 1391*x^4 + 27852*x^5 + 650161*x^6 + 17204220*x^7 + ...
where B(x)^3 = (1/x) * Series_Reversion( x/A(x)^3 ).
-
/* Using A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)) */
{a(n) = my(A=1); for(i=1,n, A = 1 + x*A^2/(A - 3*x*A' + x*O(x^n)) );
polcoeff(A,n)}
for(n=0,20, print1(a(n),", "))
-
/* Using [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1)*A(x)^(3*n+1) */
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff((x*Ser(A)^(3*(#A)-2) - Ser(A)^(3*(#A)-2)/(3*(#A)-2)),#A-1));A[n+1]}
for(n=0,20, print1(a(n),", "))
A352238
G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 4*x*A'(x)).
Original entry on oeis.org
1, 1, 5, 61, 1161, 28857, 864141, 29861749, 1160382737, 49854838897, 2340623599381, 119051103325613, 6516915195123097, 381912592990453545, 23856225840952434333, 1582482450123627473637, 111113139625779846025761, 8234335766045466358238433
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 61*x^3 + 1161*x^4 + 28857*x^5 + 864141*x^6 + 29861749*x^7 + 1160382737*x^8 + ...
such that A(x) = 1 + x*A(x)^2/(A(x) - 4*x*A'(x)).
Related table.
The table of coefficients of x^k in A(x)^(4*n+1) begins:
n=0: [1, 1, 5, 61, 1161, 28857, 864141, ...];
n=1: [1, 5, 35, 415, 7430, 176286, 5107530, ...];
n=2: [1, 9, 81, 993, 17127, 389583, 10916559, ...];
n=3: [1, 13, 143, 1859, 31564, 693212, 18802212, ...];
n=4: [1, 17, 221, 3077, 52309, 1118549, 29427153, ...];
n=5: [1, 21, 315, 4711, 81186, 1704906, 43640030, ...];
n=6: [1, 25, 425, 6825, 120275, 2500555, 62513875, ...]; ...
in which the following pattern holds:
[x^n] A(x)^(4*n+1) = [x^(n-1)] (4*n+1) * A(x)^(4*n+1), n >= 1,
as illustrated by
[x^1] A(x)^5 = 5 = [x^0] 5*A(x)^5 = 5*1;
[x^2] A(x)^9 = 81 = [x^1] 9*A(x)^9 = 9*9;
[x^3] A(x)^13 = 1859 = [x^2] 13*A(x)^13 = 13*143;
[x^4] A(x)^17 = 52309 = [x^3] 17*A(x)^17 = 17*3077;
[x^5] A(x)^21 = 1704906 = [x^4] 21*A(x)^21 = 21*81186;
[x^6] A(x)^25 = 62513875 = [x^5] 25*A(x)^25 = 25*2500555; ...
Also, compare the above terms along the diagonal to the series
B(x) = A(x*B(x)^4) = 1 + x + 9*x^2 + 143*x^3 + 3077*x^4 + 81186*x^5 + 2500555*x^6 + 87388600*x^7 + ...
where B(x)^4 = (1/x) * Series_Reversion( x/A(x)^4 ).
-
/* Using A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)) */
{a(n) = my(A=1); for(i=1,n, A = 1 + x*A^2/(A - 4*x*A' + x*O(x^n)) );
polcoeff(A,n)}
for(n=0,20, print1(a(n),", "))
-
/* Using [x^n] A(x)^(4*n+1) = [x^(n-1)] (4*n+1)*A(x)^(4*n+1) */
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff((x*Ser(A)^(4*(#A)-3) - Ser(A)^(4*(#A)-3)/(4*(#A)-3)),#A-1));A[n+1]}
for(n=0,20, print1(a(n),", "))
A286796
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 27, 40, 14, 1, 248, 419, 200, 30, 1, 2830, 5308, 3124, 700, 55, 1, 38232, 78070, 53620, 15652, 1960, 91, 1, 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1, 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1, 202601898, 495263284, 456715752, 209878440, 52619854, 7322172, 545908, 19800, 285, 1, 4342263000, 11085720018, 10921213644, 5516785032, 1579263840, 264576774, 25677652, 1372228, 36300, 385, 1
Offset: 0
A(x;t) = 1 + (1 + t)*x + (4 + 5*t + t^2)*x^2 + (27 + 40*t + 14*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 1; 1;
[2] 4, 5, 1;
[3] 27, 40, 14, 1;
[4] 248, 419, 200, 30, 1;
[5] 2830, 5308, 3124, 700, 55, 1;
[6] 38232, 78070, 53620, 15652, 1960, 91, 1;
[7] 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1;
[8] 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1;
[9] ...
-
max = 11; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = Normal[(1 + x*(1 + 2*t + x*t^2)*y0[x, t]^2 + t*(1 - t)*x^2*y0[x, t]^3 + 2*x^2*y0[x, t]*D[y0[x, t], x])/(1 + 2*x*t) + O[x]^n]; y0[x_, t_] = y1[x, t]];
row[n_] := CoefficientList[SeriesCoefficient[y0[x, t]/(1 - x*t*y0[x, t]), {x, 0, n}], t];
Flatten[Table[row[n], {n, 0, max-1}]] (* Jean-François Alcover, May 23 2017, adapted from PARI *)
-
A286795_ser(N, t='t) = {
my(x='x+O('x^N), y0=1, y1=0, n=1);
while(n++,
y1 = (1 + x*(1 + 2*t + x*t^2)*y0^2 + t*(1-t)*x^2*y0^3 + 2*x^2*y0*y0');
y1 = y1 / (1+2*x*t); if (y1 == y0, break()); y0 = y1;); y0;
};
A286796_ser(N,t='t) = my(v=A286795_ser(N,t)); v/(1-x*t*v);
concat(apply(p->Vecrev(p), Vec(A286796_ser(11))))
Showing 1-5 of 5 results.