cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049495 a(n) and a(n)+4^k are primes at least for k=1,2,3,4,5.

Original entry on oeis.org

7, 37, 163, 9157, 9277, 15667, 53593, 56893, 111577, 135193, 137383, 142543, 305407, 467527, 470647, 476023, 480043, 527377, 607093, 671353, 761377, 817147, 885943, 891643, 904663, 1080073, 1116637, 1140847, 1172803, 1233523
Offset: 1

Views

Author

Keywords

Examples

			7, 7+4=11, 7+16=23, 7+64=71, 7+256=263, 7+1024=1031 are all primes; the smallest such a sextuple is {7,11,23,71,263,1031}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^5], Function[p, AllTrue[Range@ 5, PrimeQ[p + 4^#] &]]] (* Michael De Vlieger, Aug 09 2017 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+4) && isprime(n+16) && isprime(n+64) && isprime(n+256) && isprime(n+1024); \\ Michel Marcus, Dec 22 2013

A247590 Primes p such that p + 6^k is also prime at least for k = 1, 2, 3 and 4.

Original entry on oeis.org

7, 11, 23, 131, 157, 193, 227, 271, 331, 571, 947, 977, 1013, 1087, 1283, 1453, 1657, 1871, 2341, 2671, 2693, 3607, 3637, 3691, 4013, 4951, 5407, 5653, 6211, 6353, 6653, 6827, 6977, 6991, 7541, 7717, 8053, 8081, 8537, 9203, 9613, 9643, 10853, 11113, 11251, 11933
Offset: 1

Views

Author

K. D. Bajpai, Sep 20 2014

Keywords

Examples

			a(1) = 7 is prime. 7 + 6^1 = 13, 7 + 6^2 = 43, 7 + 6^3 = 223 and 7 + 6^4 = 1303 are also prime. It is the smallest such set of 5 primes; (Quintet).
		

Crossrefs

Programs

  • Mathematica
    Select[k = {1, 2, 3, 4}; Prime[Range[500]], And @@ PrimeQ[# + 6^k] &]
  • PARI
    forprime(p=1,10^4,c=1;for(k=1,4,if(!isprime(p+6^k),c--;break));if(c,print1(p,", "))) \\ Derek Orr, Sep 20 2014
Showing 1-2 of 2 results.