cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049500 Smallest prime p such that p + 4^k is also prime for all k = 1, ..., n.

Original entry on oeis.org

3, 3, 3, 7, 7, 37, 37, 163, 671353, 13243063, 5906322013, 12087247687, 1523351345443, 1523351345443, 23631302781703
Offset: 1

Views

Author

Keywords

Comments

a(13) > 10^11. - Donovan Johnson, Dec 02 2009
All terms from a(4) satisfy p == 7 or 13 (mod 30); a(16) > 10^14. - Mikk Heidemaa, May 12 2025

Examples

			Prime 3 generates the {3,7,19,67} exponential prime-chain of length 4 if the start is also counted.
The smallest "exponential 11-chain" starts with 13243063 as follows: 13243063, 13243067, 13243079, 13243127, 13243319, 13244087, 13247159, 13259447, 13308599, 13505207, 14291639.
		

Crossrefs

Programs

  • Mathematica
    Table[p = 2; While[Times @@ Boole@ PrimeQ[p + 4^Range@ n] != 1, p = NextPrime@ p]; p, {n, 10}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    okchain(n, p)=for (k=1, n, if (! isprime(p + 4^k), return (0));); return (1);
    a(n) = {p = 2; while (! okchain(n, p), p = nextprime(p+1)); p;} \\ Michel Marcus, Dec 17 2013

Extensions

a(11)-a(12) from Donovan Johnson, Dec 02 2009
a(13)-a(15) from Mikk Heidemaa, May 12 2025

A049498 a(n) and a(n)+4^k are primes at least for k=1,2,3,4,5,6,7,8.

Original entry on oeis.org

163, 15667, 607093, 671353, 1457857, 5772097, 9139453, 11170933, 13243063, 18116473, 19433863, 21960577, 32380177, 52896517, 115831753, 154146133, 165609217, 191489677, 361241743, 394845313, 518774953, 613615423, 705676717, 742403797, 786242293, 945170293
Offset: 1

Views

Author

Keywords

Examples

			163, 163+4 = 167, 163+16 = 179, 163+64 = 227, 163+256 = 419, 163+1024 = 1187, 163+4096 = 4259, 163+16384 = 16547, 163+65536 = 65699 are all primes; the smallest such a 9-chain of primes is {163, 167, 178, 227, 419, 1187, 4259, 16547, 65699}
		

Crossrefs

Programs

  • Mathematica
      With[{c=4^Range[8]},Select[Prime[Range[500000]],And@@PrimeQ[#+c]&]] (* Harvey P. Dale, May 22 2012 *)

Extensions

More terms from Michel Marcus, Dec 22 2013
Showing 1-2 of 2 results.