A049569 Primes p such that x^37 = 2 has a solution mod p.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1
Links
Programs
-
Magma
[p: p in PrimesUpTo(300) | exists(t){x : x in ResidueClassRing(p) | x^37 eq 2}]; // Vincenzo Librandi, Sep 14 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^37 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
-
PARI
N=10^4; default(primelimit,N); ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); } forprime(p=2,N, if (ok(p,2,37),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */
Comments