cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049569 Primes p such that x^37 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Keywords

Comments

Complement of A059223 relative to A000040. - Vincenzo Librandi, Sep 14 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(300) | exists(t){x : x in ResidueClassRing(p) | x^37 eq 2}]; // Vincenzo Librandi, Sep 14 2012
    
  • Mathematica
    ok[p_]:= Reduce[Mod[x^37 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
  • PARI
    N=10^4;  default(primelimit,N);
    ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); }
    forprime(p=2,N, if (ok(p,2,37),print1(p,", ")));
    /* Joerg Arndt, Sep 21 2012 */