cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049642 Numbers k such that the number of divisors of k does not divide the sum of divisors of k.

Original entry on oeis.org

2, 4, 8, 9, 10, 12, 16, 18, 24, 25, 26, 28, 32, 34, 36, 40, 48, 50, 52, 58, 63, 64, 72, 74, 75, 76, 80, 81, 82, 84, 88, 90, 98, 100, 104, 106, 108, 112, 117, 120, 121, 122, 124, 128, 130, 136, 144, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175
Offset: 1

Views

Author

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 119, section III.51.

Crossrefs

Complement of A003601.

Programs

  • GAP
    a:=Filtered([1..180],n->Sigma(n) mod Tau(n)>0);; Print(a); # Muniru A Asiru, Jan 25 2019
    
  • Haskell
    a049642 n = a049642_list !! (n-1)
    a049642_list = filter ((== 0) . a245656) [1..]
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Maple
    isA049642 := proc(n)
        if modp(numtheory[sigma](n),numtheory[tau](n)) = 0 then
            false;
        else
            true;
        end if;
    end proc:
    A049642 := proc(n)
        option remember;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA049642(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    Select[Range[175], Mod[DivisorSigma[1, #], DivisorSigma[0, #]] > 0 &] (* Jayanta Basu, Mar 28 2013 *)
  • PARI
    is(n) = {my(f = factor(n)); sigma(f) % numdiv(f) > 0;} \\ Amiram Eldar, Apr 25 2024

Formula

A054025(a(n)) > 0. - Reinhard Zumkeller, Jan 06 2012
A245656(a(n)) = 0. - Reinhard Zumkeller, Jul 28 2014