A049642 Numbers k such that the number of divisors of k does not divide the sum of divisors of k.
2, 4, 8, 9, 10, 12, 16, 18, 24, 25, 26, 28, 32, 34, 36, 40, 48, 50, 52, 58, 63, 64, 72, 74, 75, 76, 80, 81, 82, 84, 88, 90, 98, 100, 104, 106, 108, 112, 117, 120, 121, 122, 124, 128, 130, 136, 144, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175
Offset: 1
References
- József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 119, section III.51.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Wikipedia, Arithmetic number.
Programs
-
GAP
a:=Filtered([1..180],n->Sigma(n) mod Tau(n)>0);; Print(a); # Muniru A Asiru, Jan 25 2019
-
Haskell
a049642 n = a049642_list !! (n-1) a049642_list = filter ((== 0) . a245656) [1..] -- Reinhard Zumkeller, Jan 06 2012
-
Maple
isA049642 := proc(n) if modp(numtheory[sigma](n),numtheory[tau](n)) = 0 then false; else true; end if; end proc: A049642 := proc(n) option remember; if n = 1 then 2; else for a from procname(n-1)+1 do if isA049642(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 26 2015
-
Mathematica
Select[Range[175], Mod[DivisorSigma[1, #], DivisorSigma[0, #]] > 0 &] (* Jayanta Basu, Mar 28 2013 *)
-
PARI
is(n) = {my(f = factor(n)); sigma(f) % numdiv(f) > 0;} \\ Amiram Eldar, Apr 25 2024
Formula
A054025(a(n)) > 0. - Reinhard Zumkeller, Jan 06 2012
A245656(a(n)) = 0. - Reinhard Zumkeller, Jul 28 2014