A049643 Number of fractions in Farey series of order n.
0, 2, 3, 5, 7, 11, 13, 19, 23, 29, 33, 43, 47, 59, 65, 73, 81, 97, 103, 121, 129, 141, 151, 173, 181, 201, 213, 231, 243, 271, 279, 309, 325, 345, 361, 385, 397, 433, 451, 475, 491, 531, 543, 585, 605, 629, 651, 697, 713, 755, 775, 807, 831, 883
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Crossrefs
Cf. A000010.
Programs
-
Magma
[0] cat [n le 1 select 2 else Self(n-1)+EulerPhi(n): n in [1..60]]; // G. C. Greubel, Dec 06 2017
-
Mathematica
a[0] = 0; a[n_] := 1 + Sum[EulerPhi[k], {k, 1, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 27 2015 *) a[0] = 0; a[1] = 2; a[n_] := a[n -1] + EulerPhi[n]; Array[a, 55, 0] (* Robert G. Wilson v, Dec 13 2017 *) Join[{0},Rest[Accumulate[EulerPhi[Range[0,60]]]+1]] (* Harvey P. Dale, Oct 16 2018 *) a[n_] := If[n == 0, 0, FareySequence[n] // Length]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 16 2022 *)
-
PARI
for(n=0, 30, print1(if(n==0, 0, 1+sum(k=1, n, eulerphi(k))), ", ")) \\ G. C. Greubel, Dec 06 2017
Formula
a(n) = A049641(2*n).
From G. C. Greubel, Dec 13 2017: (Start)
a(n) = 1 + Sum_{k=1..n} phi(k), with a(0)=0.
a(n) = A005728(n) for n >= 1. (End)
a(n) = a(n-1) + phi(n) for n > 1. - Robert G. Wilson v, Dec 13 2017
Comments