A049654 a(n) = (F(8*n+1) - 1)/3 where F=A000045 (the Fibonacci sequence).
0, 11, 532, 25008, 1174859, 55193380, 2592914016, 121811765387, 5722560059188, 268838511016464, 12629687457714635, 593326472001571396, 27873714496616140992, 1309471254868957055243, 61517275264344365455444
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (48,-48,1).
Programs
-
Magma
[(Fibonacci(8*n+1) - 1)/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017
-
Mathematica
LinearRecurrence[{48, -48, 1}, {0, 11, 532}, 50] (* or *) Table[( Fibonacci[8*n+1]-1)/3, {n,0,30}] (* G. C. Greubel, Dec 02 2017 *) CoefficientList[Series[-x(11+4x)/((x-1)(x^2-47*x+1)),{x,0,14}],x] (* Stefano Spezia, Feb 18 2024 *)
-
PARI
for(n=0,30, print1((fibonacci(8*n+1) - 1)/3, ", ")) \\ G. C. Greubel, Dec 02 2017
Formula
From R. J. Mathar, Oct 26 2015: (Start)
G.f.: -x*(11+4*x) / ( (x-1)*(x^2-47*x+1) ).