A049680 a(n) = (L(n) + L(2*n))/2, where L = A000032 (the Lucas sequence).
2, 2, 5, 11, 27, 67, 170, 436, 1127, 2927, 7625, 19901, 52002, 135982, 355745, 930931, 2436527, 6377807, 16695530, 43706576, 114420627, 299549527, 784218605, 2053091161, 5375030402, 14071960442, 36840786845, 96450296411, 252509934627, 661079236027, 1730727334250
Offset: 0
Examples
a(8) = (L(8) + L(2 * 8)) / 2 = (47 + 2207) / 2 = 2254 / 2 = 1127. - _Indranil Ghosh_, Feb 06 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..2388
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-2,1).
Programs
-
Magma
[(Lucas(n) + Lucas(2*n))/2: n in [0..30]]; // G. C. Greubel, Dec 02 2017
-
Mathematica
LinearRecurrence[{4,-3,-2,1},{2,2,5,11},30] (* Harvey P. Dale, Nov 22 2015 *) Table[(LucasL[n] + LucasL[2*n])/2, {n,0,30}] (* G. C. Greubel, Dec 02 2017 *)
-
PARI
my(x='x+O('x^30)); Vec((1-x)*(2-4*x-x^2)/ ( (1-x-x^2)*(1-3*x+x^2) )) \\ G. C. Greubel, Dec 02 2017
Formula
Binomial transform of trace(A^n)/4, where A is the adjacency matrix of path graph P_4 (A005248 with interpolated zeros). - Paul Barry, Apr 24 2004
From George F. Johnson, Feb 04 2013: (Start)
G.f.: (1-x)*(2-4*x-x^2)/ ( (1-x-x^2)*(1-3*x+x^2) ).
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4) for n>3. (End)