cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049680 a(n) = (L(n) + L(2*n))/2, where L = A000032 (the Lucas sequence).

Original entry on oeis.org

2, 2, 5, 11, 27, 67, 170, 436, 1127, 2927, 7625, 19901, 52002, 135982, 355745, 930931, 2436527, 6377807, 16695530, 43706576, 114420627, 299549527, 784218605, 2053091161, 5375030402, 14071960442, 36840786845, 96450296411, 252509934627, 661079236027, 1730727334250
Offset: 0

Views

Author

Keywords

Examples

			a(8) = (L(8) + L(2 * 8)) / 2 = (47 + 2207) / 2 = 2254 / 2 = 1127. - _Indranil Ghosh_, Feb 06 2017
		

Programs

  • Magma
    [(Lucas(n) + Lucas(2*n))/2: n in [0..30]]; // G. C. Greubel, Dec 02 2017
  • Mathematica
    LinearRecurrence[{4,-3,-2,1},{2,2,5,11},30] (* Harvey P. Dale, Nov 22 2015 *)
    Table[(LucasL[n] + LucasL[2*n])/2, {n,0,30}] (* G. C. Greubel, Dec 02 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)*(2-4*x-x^2)/ ( (1-x-x^2)*(1-3*x+x^2) )) \\ G. C. Greubel, Dec 02 2017
    

Formula

Binomial transform of trace(A^n)/4, where A is the adjacency matrix of path graph P_4 (A005248 with interpolated zeros). - Paul Barry, Apr 24 2004
From George F. Johnson, Feb 04 2013: (Start)
G.f.: (1-x)*(2-4*x-x^2)/ ( (1-x-x^2)*(1-3*x+x^2) ).
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4) for n>3. (End)