cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049656 a(n) = (F(8n+7)-1)/3, where F=A000045 (the Fibonacci sequence).

Original entry on oeis.org

4, 203, 9552, 448756, 21081995, 990405024, 46527954148, 2185823439947, 102687173723376, 4824111341558740, 226630545879537419, 10646811544996699968, 500173512068965361092, 23497508255696375271371, 1103882714505660672393360, 51858990073510355227216564
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[4,203]; [n le 2 select I[n] else 47*Self(n-1)-Self(n-2)+15: n in [1..30]]; // Vincenzo Librandi, Mar 06 2016
  • Mathematica
    (Fibonacci[8Range[0,20]+7]-1)/3 (* Harvey P. Dale, Sep 21 2011 *)
    RecurrenceTable[{a[0] == 4, a[1] == 203, a[n] == 47 a[n-1] - a[n-2] + 15}, a, {n, 30}] (* Vincenzo Librandi, Mar 06 2016 *)
  • PARI
    Vec((-4-11*x)/((x-1)*(x^2-47*x+1)) + O(x^25)) \\ Colin Barker, Mar 06 2016
    

Formula

G.f.: ( -4-11*x ) / ( (x-1)*(x^2-47*x+1) ). - R. J. Mathar, Oct 26 2015
a(n) = (-1+((94+42*sqrt(5))^(-n)*(4^n*(1+sqrt(5))+2*(47+21*sqrt(5))^(2*n)*(682+305*sqrt(5))))/(105+47*sqrt(5)))/3. - Colin Barker, Mar 06 2016
a(n) = 47*a(n-1)-a(n-2)+15. - Vincenzo Librandi, Mar 06 2016

A049655 a(n) = (F(8n+2)-1)/3, where F=A000045 (the Fibonacci sequence).

Original entry on oeis.org

0, 18, 861, 40464, 1900962, 89304765, 4195423008, 197095576626, 9259296678429, 434989848309552, 20435263573870530, 960022398123605373, 45100617448235582016, 2118768997668948749394, 99537042272992355639517, 4676122217832971766307920
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,18]; [n le 2 select I[n] else 47*Self(n-1)-Self(n-2)+15: n in [1..30]]; // Vincenzo Librandi, Mar 06 2016
  • Mathematica
    (Fibonacci[8*Range[0,20]+2]-1)/3 (* or *) LinearRecurrence[{48,-48,1},{0,18,861},20] (* Harvey P. Dale, Dec 02 2015 *)
    RecurrenceTable[{a[0] == 0, a[1] == 18, a[n] == 47 a[n-1] - a[n-2] + 15}, a, {n, 30}] (* Vincenzo Librandi, Mar 06 2016 *)
  • PARI
    concat(0, Vec(3*x*(-6+x)/((x-1)*(x^2-47*x+1)) + O(x^25))) \\ Colin Barker, Mar 06 2016
    

Formula

G.f.: 3*x*(-6+x) / ( (x-1)*(x^2-47*x+1) ). - R. J. Mathar, Oct 26 2015
a(n) = (-1+((47+21*sqrt(5))^(-n)*(-2^(1+n)*(9+4*sqrt(5))+(123+55*sqrt(5))*(2207+987*sqrt(5))^n))/(105+47*sqrt(5)))/3. - Colin Barker, Mar 06 2016
a(n) = 47*a(n-1)-a(n-2)+15. - Vincenzo Librandi, Mar 06 2016
Showing 1-2 of 2 results.