A049691 a(n)=T(n,n), array T as in A049687. Also a(n)=T(2n,2n), array T given by A049639.
0, 3, 5, 9, 13, 21, 25, 37, 45, 57, 65, 85, 93, 117, 129, 145, 161, 193, 205, 241, 257, 281, 301, 345, 361, 401, 425, 461, 485, 541, 557, 617, 649, 689, 721, 769, 793, 865, 901, 949, 981, 1061, 1085, 1169, 1209, 1257, 1301, 1393, 1425, 1509, 1549
Offset: 0
Keywords
References
- A. O. Matveev, Farey Sequences, De Gruyter, 2017.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- A. O. Matveev, Farey Sequences: Errata + Haskell code
- Eric Weisstein's World of Mathematics, Visible Point
Crossrefs
Programs
-
Maple
Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end: # A006842/A006843 BF := proc(m) local a,i,h,k; global Farey; a:=[]; for i in Farey(2*m) do h:=numer(i); k:=denom(i); if (h <= m) and (k-m <= h) then a:=[op(a),i]; fi; od: a; end; [seq(nops(BF(m),m=1..20)]; # this sequence - N. J. A. Sloane, Sep 08 2019
-
Mathematica
a[0] = 0; a[n_] := 2 + Sum[Quotient[n, g]^2*MoebiusMu[g], {g, 1, n}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 07 2017, translated from PARI *)
-
PARI
a(n) = if(n>0, 2, 0) + sum(g=1, n, (n\g)^2 * moebius(g)); \\ Andrew Howroyd, Sep 17 2017
-
PARI
a(n) = if(n>0, 1, 0) + 2 * sum(k=1, n, eulerphi(k)); \\ Torlach Rush, Nov 24 2020
-
PARI
a(n)=#Set(concat([[c/d|c<-[-d..d],d]|d<-[0..n]])) \\ For illustrative purpose only! - M. F. Hasler, Mar 26 2023
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A049691(n): if n == 0: return 0 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(A049691(k1)-2) j, k1 = j2, n//j2 return n*(n-1)-c+j+2 # Chai Wah Wu, Aug 04 2024
Formula
a(n) = 1 + 2 * Sum{k=1..n} A000010(k), n > 0. - Torlach Rush, Nov 24 2020
Extensions
Terms a(41) and beyond from Andrew Howroyd, Sep 17 2017
Comments