A049761 Triangular array T, read by rows: T(n,k) = n^3 mod k, for k = 1..n and n >= 1.
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 3, 3, 1, 0, 0, 0, 2, 0, 2, 2, 1, 0, 0, 1, 0, 1, 4, 3, 1, 1, 0, 0, 0, 1, 0, 0, 4, 6, 0, 1, 0, 0, 1, 2, 3, 1, 5, 1, 3, 8, 1, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 8, 1, 0, 0, 1, 1, 1, 2, 1, 6, 5, 1, 7, 8, 1, 0
Offset: 1
Examples
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows: 0; 0, 0; 0, 1, 0; 0, 0, 1, 0; 0, 1, 2, 1, 0; 0, 0, 0, 0, 1, 0; 0, 1, 1, 3, 3, 1, 0; 0, 0, 2, 0, 2, 2, 1, 0; 0, 1, 0, 1, 4, 3, 1, 1, 0; 0, 0, 1, 0, 0, 4, 6, 0, 1, 0; 0, 1, 2, 3, 1, 5, 1, 3, 8, 1, 0; ...
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..15], n-> List([1..n], k-> PowerMod(n,3,k) ))); # G. C. Greubel, Dec 13 2019
-
Magma
[[Modexp(n,3,k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019
-
Maple
seq(seq( `mod`(n^3, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 13 2019
-
Mathematica
Table[PowerMod[n,3,k], {n,15}, {k, n}]//Flatten (* G. C. Greubel, Dec 13 2019 *)
-
PARI
T(n,k) = lift(Mod(n,k)^3); for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 13 2019
-
Sage
[[power_mod(n,3,k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019