A049762 a(n) = Sum_{k=1..n} T(n,k), array T as in A049761.
0, 0, 1, 1, 4, 1, 9, 7, 11, 12, 25, 18, 34, 34, 41, 32, 76, 44, 87, 64, 93, 85, 122, 75, 80, 160, 144, 132, 172, 103, 218, 232, 220, 245, 251, 210, 299, 330, 344, 315, 413, 275, 456, 392, 383, 472, 502, 479, 449, 553, 557, 626, 646, 632, 628, 618, 771
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
GAP
List([1..60], n-> Sum([1..n], k-> PowerMod(n,3,k)) ); # G. C. Greubel, Dec 14 2019
-
Magma
[&+[n^3 mod i: i in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 18 2017
-
Maple
seq( add( `mod`(n^3, k), k = 1..n), n = 1..60); # G. C. Greubel, Dec 14 2019
-
Mathematica
Table[Sum[Mod[n^3, i], {i, n}], {n, 60}] (* Vincenzo Librandi, Sep 18 2017 *)
-
PARI
vector(60, n, sum(k=1,n, lift(Mod(n,k)^3)) ) \\ G. C. Greubel, Dec 14 2019
-
Sage
[sum(power_mod(n,3,k) for k in (1..n)) for n in (1..60)] # G. C. Greubel, Dec 14 2019
Formula
a(n) = Sum_{i=1..n} (n^3 mod i). - Wesley Ivan Hurt, Sep 15 2017