A049770 a(n) = Sum_{k=1..n} T(n,k), array T as in A049769.
0, 1, 4, 5, 14, 16, 30, 23, 38, 57, 80, 78, 112, 125, 146, 128, 212, 179, 258, 244, 303, 316, 375, 315, 330, 485, 387, 496, 578, 538, 683, 616, 748, 806, 846, 750, 965, 1033, 1085, 1035, 1233, 1136, 1359, 1316, 1328, 1507, 1583
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Row sums of A049769.
Programs
-
GAP
List([1..50], n-> Sum([1..n], k-> PowerMod(k,3,n) + PowerMod(n,3,k)) ); # G. C. Greubel, Dec 13 2019
-
Magma
[&+[Modexp(k,3,n) + Modexp(n,3,k): k in [1..n]]: n in [1..50]]; // G. C. Greubel, Dec 13 2019
-
Maple
seq( add( `mod`(k^3, n) + `mod`(n^3, k), k = 1..n), n = 1..50); # G. C. Greubel, Dec 13 2019
-
Mathematica
Table[Sum[PowerMod[k,3,n] + PowerMod[n,3,k], {k,n}], {n,50}] (* G. C. Greubel, Dec 13 2019 *)
-
PARI
T(n,k) = lift(Mod(k,n)^3) + lift(Mod(n,k)^3); vector(50, n, sum(k=1,n, T(n,k)) ) \\ G. C. Greubel, Dec 13 2019
-
Sage
[sum(power_mod(k,3,n) + power_mod(n,3,k) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Dec 13 2019