cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A049770 a(n) = Sum_{k=1..n} T(n,k), array T as in A049769.

Original entry on oeis.org

0, 1, 4, 5, 14, 16, 30, 23, 38, 57, 80, 78, 112, 125, 146, 128, 212, 179, 258, 244, 303, 316, 375, 315, 330, 485, 387, 496, 578, 538, 683, 616, 748, 806, 846, 750, 965, 1033, 1085, 1035, 1233, 1136, 1359, 1316, 1328, 1507, 1583
Offset: 1

Views

Author

Keywords

Crossrefs

Row sums of A049769.

Programs

  • GAP
    List([1..50], n-> Sum([1..n], k-> PowerMod(k,3,n) + PowerMod(n,3,k)) ); # G. C. Greubel, Dec 13 2019
  • Magma
    [&+[Modexp(k,3,n) + Modexp(n,3,k): k in [1..n]]: n in [1..50]]; // G. C. Greubel, Dec 13 2019
    
  • Maple
    seq( add( `mod`(k^3, n) + `mod`(n^3, k), k = 1..n), n = 1..50); # G. C. Greubel, Dec 13 2019
  • Mathematica
    Table[Sum[PowerMod[k,3,n] + PowerMod[n,3,k], {k,n}], {n,50}] (* G. C. Greubel, Dec 13 2019 *)
  • PARI
    T(n,k) = lift(Mod(k,n)^3) + lift(Mod(n,k)^3);
    vector(50, n, sum(k=1,n, T(n,k)) ) \\ G. C. Greubel, Dec 13 2019
    
  • Sage
    [sum(power_mod(k,3,n) + power_mod(n,3,k) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Dec 13 2019
    
Showing 1-1 of 1 results.