A049766 a(n) = Sum_{k=1..n} T(n,k), array T as in A049765.
0, 1, 4, 7, 14, 18, 29, 36, 48, 58, 77, 83, 106, 122, 141, 156, 187, 200, 235, 251, 280, 308, 351, 361, 403, 437, 476, 502, 557, 573, 632, 663, 712, 758, 813, 828, 899, 951, 1010, 1038, 1117, 1145, 1228, 1274, 1329, 1393, 1484
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
GAP
List([1..50], n-> Sum([1..n], k-> (k mod n) + (n mod k)) ); # G. C. Greubel, Dec 13 2019
-
Magma
[&+[ (k mod n) + (n mod k): k in [1..n]]: n in [1..50]]; // G. C. Greubel, Dec 13 2019
-
Maple
seq( add( `mod`(k, n) + `mod`(n, k), k = 1..n), n = 1..50); # G. C. Greubel, Dec 13 2019
-
Mathematica
T[n_, k_] := Mod[n, k] + Mod[k, n]; Map[Total[T[#, Range[#]]] &, Range[80]] (* Carl Najafi, Aug 24 2011 *)
-
PARI
a(n) = sum(k=1, n, k%n + n%k); \\ Michel Marcus, Aug 22 2015
-
Sage
[sum((k%n) + (n%k) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Dec 13 2019