A049775 a(n) is the sum of all integers from 2^(n-2)+1 to 2^(n-1).
2, 7, 26, 100, 392, 1552, 6176, 24640, 98432, 393472, 1573376, 6292480, 25167872, 100667392, 402661376, 1610629120, 6442483712, 25769869312, 103079346176, 412317122560, 1649267965952, 6597070815232, 26388281163776
Offset: 2
Keywords
Examples
a(2) = 2 = 2. a(3) = 7 = 3 + 4. a(4) =26 = 5 + 6 + 7 + 8. ..
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{6,-8},{2,7},30] (* Harvey P. Dale, Mar 04 2013 *)
Formula
a(n) = 2^(n-3)*(3*2^(n-2)+1). - Carl R. White, Aug 19 2003
From Philippe Deléham, Feb 20 2004: (Start)
a(n+1) = 4*a(n) - 2^(n-2); see also A007582.
a(n+1) = 2^(n-2)*A004119(n). (End)
From R. J. Mathar, Mar 26 2009: (Start)
a(n) = 6*a(n-1) - 8*a(n-2).
G.f.: -x^2*(-2+5*x)/((4*x-1)*(2*x-1)). (End)
Extensions
More terms from Michael Somos
Name change by Olivier Gérard, Oct 24 2017
Comments