A049834 Triangular array T given by rows: T(n,k)=sum of quotients when Euclidean algorithm acts on n and k; for k=1,2,...,n; n=1,2,3,...; also number of subtraction steps when computing gcd(n,k) using subtractions rather than divisions.
1, 2, 1, 3, 3, 1, 4, 2, 4, 1, 5, 4, 4, 5, 1, 6, 3, 2, 3, 6, 1, 7, 5, 5, 5, 5, 7, 1, 8, 4, 5, 2, 5, 4, 8, 1, 9, 6, 3, 6, 6, 3, 6, 9, 1, 10, 5, 6, 4, 2, 4, 6, 5, 10, 1, 11, 7, 6, 6, 7, 7, 6, 6, 7, 11, 1, 12, 6, 4, 3, 6, 2, 6, 3, 4, 6, 12, 1, 13, 8, 7, 7, 6, 8, 8, 6, 7, 7, 8, 13, 1
Offset: 1
Examples
Rows: 1; 2,1; 3,3,1; 4,2,4,1; 5,4,4,5,1; 6,3,2,3,6,1; 7,5,5,5,5,7,1; ...
Links
- R. J. Mathar, Table of n, a(n) for n = 1..5050
- N. J. A. Sloane, Rows 1 through 100
Crossrefs
Programs
-
Maple
A049834 := proc(n,k) local a,b,r,s ; a := n ; b := k ; r := 1; s := 0 ; while r > 0 do q := floor(a/b); r := a-b*q ; s := s+q ; a := b; b := r; end do: s ; end proc: # R. J. Mathar, May 06 2016 # second Maple program: T:= (n, k)-> add(i, i=convert(k/n, confrac)): seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Jan 31 2023
-
Mathematica
T[n_, k_] := T[n, k] = Which[n < 1 || k < 1, 0, n == k, 1, n < k, T[k, n], True, 1 + T[k, n - k]]; Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 29 2020 *)
-
PARI
tabl(nn) = {for (n=1, nn, for (k=1, n, a = n; b = k; r = 1; s = 0; while (r, q = a\b; r = a - b*q; s += q; a = b; b = r); print1(s, ", ");); print(););} \\ Michel Marcus, Aug 17 2015
Comments