A049937
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2.
Original entry on oeis.org
1, 1, 2, 5, 10, 24, 45, 89, 178, 444, 844, 1667, 3320, 6635, 13267, 26533, 53066, 132664, 252062, 497492, 991669, 1981685, 3962547, 7924694, 15849122, 31698155, 63396266, 126792511, 253585008, 507170011, 1014340019, 2028680037, 4057360074, 10143400184, 19272460350, 38037750692
Offset: 1
From _Petros Hadjicostas_, Nov 06 2019: (Start)
a(4) = a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 5.
a(5) = a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = a(1) + a(1) + a(2) + a(3) + a(4) = 10.
a(6) = a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 24.
a(7) = a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = a(3) + Sum_{i = 1..6} a(i) = 45.
a(8) = a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = a(2) + Sum_{i = 1..7} a(i) = 89. (End)
-
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)); end proc;
a := proc(n) option remember;
`if`(n < 3, 1, `if`(n < 4, 2, s(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)));
end proc;
seq(a(n), n = 1 .. 30); # Petros Hadjicostas, Nov 06 2019
A049945
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 4.
Original entry on oeis.org
1, 1, 4, 7, 14, 34, 65, 127, 254, 634, 1206, 2381, 4742, 9477, 18951, 37899, 75798, 189494, 360040, 710606, 1416477, 2830593, 5660011, 11319450, 22638520, 45276913, 90553764, 181107497, 362214974, 724429941, 1448859879, 2897719755, 5795439510, 14488598774, 27528337672, 54332245406
Offset: 1
From _Petros Hadjicostas_, Nov 06 2019: (Start)
a(4) = a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 7.
a(5) = a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = a(1) + a(1) + a(2) + a(3) + a(4) = 14.
a(6) = a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 34.
a(7) = a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = a(3) + Sum_{i = 1..6} a(i) = 65.
a(8) = a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = a(2) + Sum_{i = 1..7} a(i) = 127. (End)
-
s:= proc(n) option remember; `if`(n<1, 0, a(n)+s(n-1)) end:
a:= proc(n) option remember; `if`(n<4, [1, 1, 4][n],
s(n-1)+a(Bits:-Iff(n-2$2)+3-n))
end:
seq(a(n), n=1..36); # Petros Hadjicostas, Nov 06 2019
A049885
a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1.
Original entry on oeis.org
1, 1, 1, 2, 4, 7, 15, 30, 60, 91, 197, 402, 807, 1616, 3233, 6466, 12932, 19399, 42031, 85679, 172167, 344739, 689683, 1379472, 2758975, 5517980, 11035975, 22071958, 44143919, 88287840, 176575681, 353151362, 706302724, 1059454087
Offset: 1
From _Petros Hadjicostas_, Nov 07 2019: (Start)
a(4) = -a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = -a(2) + a(1) + a(2) + a(3) = 2.
a(5) = -a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = -a(1) + a(1) + a(2) + a(3) + a(4) = 4.
a(6) = -a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = -a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 7.
a(7) = -a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = -a(3) + Sum_{i = 1..6} a(i) = 15.
a(8) = -a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = -a(2) + Sum_{i = 1..7} a(i) = 30. (End)
-
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
a := proc(n) option remember;
`if`(n < 4, 1, s(n - 1) - a(Bits:-Iff(n - 2, n - 2) + 3 - n)):
end proc:
seq(a(n), n = 1..34); # Petros Hadjicostas, Nov 07 2019
-
lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 1; va[3] = 1; my(sa = vecsum(va)); for (n=4, nn, va[n] = sa - va[2 - n + 2^ceil(log(n-1)/log(2))]; sa += va[n]; ); va; } \\ Petros Hadjicostas, Apr 27 2020 (with nn > 2)
A049929
a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n-1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 4.
Original entry on oeis.org
1, 3, 4, 5, 12, 20, 41, 83, 168, 254, 550, 1121, 2250, 4507, 9015, 18031, 36064, 54098, 117212, 238932, 480121, 961371, 1923313, 3846922, 7693930, 15387945, 30775932, 61551885, 123103778, 246207563, 492415127, 984830255, 1969660512
Offset: 1
For n = 4, 2^p < 3 <= 2^(p+1), so p = 1, m = 2^2 + 2 - 4 = 2, and a(n) = a(1) + a(2) + a(3) - a(2) = 1 + 3 + 4 - 3 = 5.
For n = 6, 2^p < 5 <= 2^(p+1), so p = 2, m = 2^3 + 2 - 6 = 4, and a(n) = a(1) + a(2) + a(3) + a(4) + a(5) - a(4) = 1 + 3 + 4 + 5 + 12 - 5 = 20.
-
Fold[Append[#1, Total@ #1 - #1[[2^Ceiling@ Log2@ #2 + 1 - #2]] ] &, {1, 3, 4}, Range[3, 32]] (* Michael De Vlieger, Dec 06 2017 *)
-
first(n)= my(res = vector(n), s = 8); res[1]=1; res[2]=3; res[3]=4; for(x=4, n, res[x] = s - res[2*2^logint(x-2, 2)+2-x]; s += res[x]); res; \\ Iain Fox, Dec 05 2017
A049977
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n -1 <= 2^(p+1), with a(1) = 1, a(2) = 3, and a(3) = 4.
Original entry on oeis.org
1, 3, 4, 11, 20, 50, 93, 185, 368, 920, 1748, 3453, 6876, 13743, 27479, 54957, 109912, 274780, 522082, 1030428, 2053989, 4104555, 8207405, 16413982, 32827412, 65654641, 131309190, 262618337, 525236644, 1050473279, 2100946551, 4201893101, 8403786200, 21009465500, 39917984450
Offset: 1
From _Petros Hadjicostas_, Nov 07 2019: (Start)
a(4) = a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 11.
a(5) = a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = a(1) + a(1) + a(2) + a(3) + a(4) = 20.
a(6) = a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 50.
a(7) = a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = a(3) + Sum_{i = 1..6} a(i) = 93.
a(8) = a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = a(2) + Sum_{i = 1..7} a(i) = 185. (End)
-
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
a := proc(n) option remember; `if`(n < 2, 1, `if`(n < 3, 3,
`if`(n < 4, 4, s(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n))))
end proc:
seq(a(n), n = 1 .. 40); # Petros Hadjicostas, Nov 07 2019
A049909
a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the smallest integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
Original entry on oeis.org
1, 2, 3, 4, 9, 15, 31, 63, 127, 192, 416, 848, 1702, 3409, 6819, 13639, 27279, 40920, 88660, 180730, 363167, 727188, 1454808, 2909840, 5819745, 11639554, 23279140, 46558296, 93116598, 186233201, 372466403, 744932807, 1489865615
Offset: 1
From _Petros Hadjicostas_, Nov 07 2019: (Start)
a(4) = -a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = -a(2) + a(1) + a(2) + a(3) = 4.
a(5) = -a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = -a(1) + a(1) + a(2) + a(3) + a(4) = 9.
a(6) = -a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = -a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 15.
a(7) = -a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = -a(3) + Sum_{i = 1..6} a(i) = 31.
a(8) = -a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = -a(2) + Sum_{i = 1..7} a(i) = 63. (End)
-
s:= proc(n) option remember; `if`(n<1, 0, a(n)+s(n-1)) end:
a:= proc(n) option remember; `if`(n<4, [1, 2, 3][n],
s(n-1) - a(Bits:-Iff(n-2$2) + 3 - n))
end:
seq(a(n), n=1..40); # Petros Hadjicostas, Nov 07 2019
A049949
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 1.
Original entry on oeis.org
1, 2, 1, 6, 11, 27, 49, 99, 197, 492, 934, 1846, 3676, 7347, 14689, 29379, 58757, 146892, 279094, 550846, 1098021, 2194212, 4387512, 8774582, 17548869, 35097640, 70195230, 140390438, 280780860, 561561715, 1123123425, 2246246851
Offset: 1
-
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
a := proc(n) option remember;
`if`(n < 4, [1, 2, 1][n], s(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)):
end proc:
seq(a(n), n = 1..34); # Petros Hadjicostas, Nov 12 2019
A049957
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2, and a(3) = 3.
Original entry on oeis.org
1, 2, 3, 8, 15, 37, 69, 137, 273, 682, 1296, 2560, 5098, 10189, 20373, 40745, 81489, 203722, 387072, 763960, 1522829, 3043120, 6084976, 12169338, 24338267, 48676398, 97352728, 194705424, 389410826, 778821645, 1557643285, 3115286569, 6230573137, 15576432842, 29595222400
Offset: 1
-
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
a := proc(n) option remember;
`if`(n < 4, [1, 2, 3][n], s(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)):
end proc:
seq(a(n), n = 1..34); # Petros Hadjicostas, Nov 11 2019
A049973
a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = a(3) = 3.
Original entry on oeis.org
1, 3, 3, 10, 18, 45, 83, 166, 330, 825, 1567, 3096, 6165, 12322, 24637, 49274, 98546, 246365, 468093, 923871, 1841585, 3680101, 7358673, 14716604, 29432713, 58865262, 117730441, 235460844, 470921661, 941843314, 1883686621
Offset: 1
-
s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
a := proc(n) option remember;
`if`(n < 4, [1, 3, 3][n], s(n - 1) + a(2^ceil(log[2](n - 1)) + 2 - n)):
end proc:
seq(a(n), n = 1..40); # Petros Hadjicostas, Nov 14 2019
Showing 1-9 of 9 results.
Comments