A050143 A(n,k) = Sum_{h=0..n-1, m=0..k} A(h,m) for n >= 1 and k >= 1, with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1; square array A, read by descending antidiagonals.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 7, 1, 0, 1, 5, 12, 15, 1, 0, 1, 6, 18, 32, 31, 1, 0, 1, 7, 25, 56, 80, 63, 1, 0, 1, 8, 33, 88, 160, 192, 127, 1, 0, 1, 9, 42, 129, 280, 432, 448, 255, 1, 0, 1, 10, 52, 180, 450, 832, 1120, 1024, 511, 1
Offset: 1
Examples
Square array A(n,k) (with rows n >= 0 and columns k >= 0) begins: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... 1, 7, 12, 18, 25, 33, 42, 52, 63, 75, ... 1, 15, 32, 56, 88, 129, 180, 242, 316, 403, ... 1, 31, 80, 160, 280, 450, 681, 985, 1375, 1865, ... 1, 63, 192, 432, 832, 1452, 2364, 3653, 5418, 7773, ... 1, 127, 448, 1120, 2352, 4424, 7700, 12642, 19825, 29953, ... ... If we read the above square array by descending antidiagonals, we get the following triangular array T(n,k) (with rows n >= 0 and columns 0 <= k <= n): 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 1, 4, 7, 1; 0, 1, 5, 12, 15, 1; 0, 1, 6, 18, 32, 31, 1; 0, 1, 7, 25, 56, 80, 63, 1; 0, 1, 8, 33, 88, 160, 192, 127, 1; 0, 1, 9, 42, 129, 280, 432, 448, 255, 1; ...
Links
- Yumin Cho, Jaehyun Kim, Jang Soo Kim, and Nakyung Lee, Enumeration of multiplex juggling card sequences using generalized q-derivatives, arXiv:2402.09903 [math.CO], 2024. See p. 9.
- Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40(4) (2002), 328-338; see Example 3A and Eq. (8) on p. 333.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := If[n == k, 1, JacobiP[k - 1, 1, n - 2*k - 1, 3]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 25 2021 *)
Formula
Formulas for the square array (A(n,k): n,k >= 0):
A(n,1) = -1 + 2^n = A000225(n) for n >= 1.
A(n+2,2) = 4*A001792(n) for n >= 0.
From Petros Hadjicostas, Feb 11 2021: (Start)
Recurrence: A(n,k) = 2*A(n-1,k) + A(n,k-1) - A(n-1,k-1) for n >= 1 and k >= 2; with A(n,0) = 1 for n >= 0, A(0,k) = 0 for k >= 1, and A(n,1) = -1 + 2^n for n >= 1.
Bivariate o.g.f.: Sum_{n,k>=0} A(n,k)*x^n*y^k = (1 - 2*x)*(1 - y)/((1 - x)*(1 - 2*x - y + x*y)).
A(n,k) = Sum_{s=1..n} binomial(n,s)*binomial(s+k-2,k-1) for n >= 0 and k >= 1. (It can be proved by using a partial fraction decomposition on the bivariate o.g.f. above.)
A(n,k) = n*hypergeom([-n + 1, k], [2], -1) for n >= 0 and k >= 1. (End)
Formulas for the triangular array (T(n,k): 0 <= k <= n):
Sum_{k=0..n} T(n,k) = Fibonacci(2*n-1) = A001519(n) with Fibonacci(-1) = 1.
Sum_{k=0..n} (-1)^(n+k-1)*T(n,k) = Fibonacci(n+1) - 2 = A001911(n-2) with A001911(-2) = A001911(-1) = -1.
T(n,k) = A055807(n,n-k) for 0 <= k <= n.
From Petros Hadjicostas, Feb 12 2021: (Start)
Recurrence: T(n,k) = 2*T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) for n >= 3 and 1 <= k <= n-2; with T(n,n) = 1 for n >= 0, T(n,0) = 0 for n >= 1, and T(n+1, n) = 2^n - 1 for n >= 1.
Bivariate o.g.f: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 - x)*(1 - 2*x*y)/((1 - x*y)*(1 - x - 2*x*y + x^2*y)).
T(n,k) = Sum_{s=1..k} binomial(k,s)*binomial(s+n-k-2, s-1) = k*hypergeom([-k+1, n-k], [2], -1) for n >= 1 and 0 <= k <= n - 1. (End)
T(n, k) = JacobiP(k - 1, 1, n - 2*k - 1, 3) n >= 0 and 0 <= k < n. - Peter Luschny, Nov 25 2021
Extensions
Various sections edited by Petros Hadjicostas, Feb 12 2021
Comments