cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050155 Triangle T(n,k), k>=0 and n>=1, read by rows defined by: T(n,k) = (2k+3)*binomial(2n,n-k-1)/(n+k+2).

Original entry on oeis.org

1, 3, 1, 9, 5, 1, 28, 20, 7, 1, 90, 75, 35, 9, 1, 297, 275, 154, 54, 11, 1, 1001, 1001, 637, 273, 77, 13, 1, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1, 41990, 48450, 38760, 23256, 10659, 3705, 950, 170, 19, 1
Offset: 1

Views

Author

Keywords

Comments

T(n-2k-1,k) = number of n-th generation vertices in the tree of sequences with unit increase labeled by 2k+2 (cf. Zoran Sunic reference) . - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=k+1 . - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+k+1, n-k-1). - Emeric Deutsch, May 30 2004
Riordan array (c(x)^3,xc(x)^2) where c(x) is the g.f. of A000108. Inverse array is A109954. - Paul Barry, Jul 06 2005

Examples

			    1;
    3,   1;
    9,   5,   1;
   28,  20,   7,  1;
   90,  75,  35,  9,  1;
  297, 275, 154, 54, 11, 1;
  ...
		

Crossrefs

Cf. A000108, A001791 (row sums), A050144.

Programs

  • Maple
    T:= (n, k)->  (2*k+3)*binomial(2*n, n-k-1)/(n+k+2):
    seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Jan 19 2013
  • Mathematica
    T[n_, k_] :=  (2*k + 3)*Binomial[2*n, n - k - 1]/(n + k + 2);
    Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 21 2016 *)

Formula

Sum_{ k = 0, .., n-1} T(n, k) = binomial(2n, n-1) = A001791(n).
G.f. of column k: x^(k+1)*C^(2*k+3) where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. of Catalan numbers A000108. - Philippe Deléham, Feb 03 2004
T(n, k) = A039599(n, k+1) = A009766(n+k+1, n-k-1) = A033184(n+k+2, 2k+3) . - Philippe Deléham, May 28 2005
Sum_{k>= 0} T(m, k)*T(n, k) = A000108(m+n) - A000108(m)*A000108(n). - Philippe Deléham, May 28 2005
T(n, k)=(2k+3)binomial(2n+2, n+k+2)/(n+k+3)=C(2n+2, n+k+2)-C(2n+2, n+k+3) [offset (0, 0)]. - Paul Barry, Jul 06 2005

Extensions

Edited by Philippe Deléham, May 22 2005