cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A026010 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 2. Also a(n) = sum of numbers in row n+1 of array T defined in A026009.

Original entry on oeis.org

1, 2, 4, 7, 14, 25, 50, 91, 182, 336, 672, 1254, 2508, 4719, 9438, 17875, 35750, 68068, 136136, 260338, 520676, 999362, 1998724, 3848222, 7696444, 14858000, 29716000, 57500460, 115000920, 222981435, 445962870, 866262915, 1732525830, 3370764540
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is the number of integer compositions of n + 2 in which the even parts appear as often at even positions as at odd positions (confirmed up to n = 19). - Gus Wiseman, Mar 17 2018

Examples

			The a(3) = 7 compositions of 5 in which the even parts appear as often at even positions as at odd positions are (5), (311), (131), (113), (221), (122), (11111). Missing are (41), (14), (32), (23), (212), (2111), (1211), (1121), (1112). - _Gus Wiseman_, Mar 17 2018
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(Floor((n+k)/2), Floor(k/2)): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Array[Sum[Binomial[Floor[(# + k)/2], Floor[k/2]], {k, 0, #}] &, 34, 0] (* Michael De Vlieger, May 16 2018 *)
    Table[2^(-1 + n)*(((2 + 3*#)*Gamma[(1 + #)/2])/(Sqrt[Pi]*Gamma[2 + #/2]) &[n + Mod[n, 2]]), {n,0,40}] (* Peter Pein, Nov 08 2018 *)
    Table[(1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*CatalanNumber[(2*n + 1 - (-1)^n)/4], {n, 0, 40}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, n--; sum(k=0,n, binomial(floor((n+k)/2), floor(k/2)))) \\ G. C. Greubel, Nov 08 2018
    

Formula

a(2*n) = ((3*n + 1)/(2*n + 1))*C(2*n + 1, n)= A051924(1+n), n>=0, a(2*n-1) = a(2*n)/2 = A097613(1+n), n >= 1. - Herbert Kociemba, May 08 2004
a(n) = Sum_{k=0..n} binomial(floor((n+k)/2), floor(k/2)). - Paul Barry, Jul 15 2004
Inverse binomial transform of A005774: (1, 3, 9, 26, 75, 216, ...). - Gary W. Adamson, Oct 22 2007
Conjecture: (n+3)*a(n) - 2*a(n-1) + (-5*n-3)*a(n-2) + 2*a(n-3) + 4*(n-3)*a(n-4) = 0. - R. J. Mathar, Jun 20 2013
a(n) = (1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*Catalan((2*n + 1 - (-1)^n)/4), where Catalan is the Catalan number = A000108. - G. C. Greubel, Nov 08 2018

A208976 Row sums of the triangle in A208101.

Original entry on oeis.org

1, 2, 4, 8, 15, 29, 54, 104, 195, 377, 713, 1385, 2639, 5147, 9866, 19304, 37179, 72929, 140997, 277133, 537471, 1058147, 2057509, 4056233, 7904455, 15600899, 30458899, 60174899, 117675359, 232676279, 455657714, 901620584, 1767883499, 3500409329, 6871173869
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 04 2012

Keywords

Comments

a(n) = A050168(n+1) - 1.
Number of Dyck (n+1)-paths that are symmetric after deleting all leading hills. - David Scambler, Aug 23 2012

Programs

  • Haskell
    a208976 n = a208976_list !! n
    a208976_list = map (subtract 1) $ tail a050168_list
  • Mathematica
    T[, 0] = 1; T[n, 1] := n; T[n_, n_] := T[n - 1, n - 2]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 2];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2018, from A208101 *)

Formula

a(n) = A001405(n) + A001405(n+1) - 1.

A122908 A central binomial scaling of the Riordan array (1+x,x) (A097806).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 0, 3, 6, 0, 0, 0, 0, 6, 10, 0, 0, 0, 0, 0, 10, 20, 0, 0, 0, 0, 0, 0, 20, 35, 0, 0, 0, 0, 0, 0, 0, 35, 70, 0, 0, 0, 0, 0, 0, 0, 0, 70, 126, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 252
Offset: 0

Views

Author

Paul Barry, Sep 18 2006

Keywords

Comments

Row sums are A050168. Diagonal sums are A001045 doubled. Row sums of inverse are 1/C(2n,n) aerated. Applications to other sequences are obvious.

Examples

			Triangle begins
.1,
.1, 1,
.0, 1, 2,
.0, 0, 2, 3,
.0, 0, 0, 3, 6,
.0, 0, 0, 0, 6, 10,
.0, 0, 0, 0, 0, 10, 20,
.0, 0, 0, 0, 0, 0, 20, 35,
.0, 0, 0, 0, 0, 0, 0, 35, 70,
.0, 0, 0, 0, 0, 0, 0, 0, 70, 126,
.0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 252
		

Formula

Number triangle T(n,k)=C(k,floor(k/2))*sum{j=0..n, (-1)^(n-j)C(n,j)C(j+1,k+1)}
Showing 1-3 of 3 results.