A050181 T(2n+3, n), array T as in A051168; a count of Lyndon words.
0, 1, 3, 9, 30, 99, 333, 1144, 3978, 13995, 49742, 178296, 643842, 2340135, 8554275, 31429026, 115997970, 429874830, 1598952366, 5967382200, 22338765540, 83859016527, 315614844558, 1190680751376, 4501802223090, 17055399281284
Offset: 0
Keywords
Programs
-
Maple
A050181 := proc(n) A051168(2*n+3,n) ; end proc: # R. J. Mathar, Jul 20 2016
-
Mathematica
a[n_] := (1/(2n+3)) Sum[MoebiusMu[d] Binomial[(2n+3)/d, n/d], {d, Divisors[ GCD[n, 3]]}]; a /@ Range[0, 25] (* Jean-François Alcover, Sep 17 2019, from PARI *)
-
PARI
a(n) = (1/(2*n+3))*sumdiv(gcd(n,3), d, moebius(d)*binomial((2*n+3)/d, n/d)); \\ Michel Marcus, Nov 18 2017
Formula
Conjecture: -(n-1)*(n+3)*(n+2)*a(n) + 2*(3*n-4)*(n+2)*(n+1)*a(n-1) - 4*n*(n+1)*(2*n-5)*a(n-2) + 2*(n-1)*(n+2)*(2*n-3)*a(n-3) - 4*(2*n-5)*(3*n-4)*(n+1)*a(n-4) + 8*n*(2*n-5)*(2*n-7)*a(n-5) = 0. - R. J. Mathar, Jul 20 2016
From Petros Hadjicostas, Nov 16 2017: (Start)
a(n) = (1/(2*n+3))*Sum_{d|gcd(n,3)} mu(d)*binomial((2*n+3)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)
a(n) = (1/(2*n+3))*(binomial(2*n+3, n) - binomial((2*n/3)+1, n/3)) if 3|n; = (1/(2*n+3))*binomial(2*n+3, n) otherwise.
Using the above formulae, one can verify R. J. Mathar's conjecture above.
(End)