cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050183 T(2n+5,n), array T as in A051168; a count of Lyndon words.

Original entry on oeis.org

0, 1, 4, 15, 55, 200, 728, 2652, 9690, 35530, 130750, 482885, 1789515, 6653325, 24812400, 92798375, 347993910, 1308233790, 4929576600, 18615637950, 70441574000, 267058714626, 1014283603024, 3858687620200, 14702930414900
Offset: 0

Views

Author

Keywords

Crossrefs

A diagonal of the square array described in A051168.

Programs

  • Maple
    A050183 := proc(n)
        binomial(2*n+5,n) ;
        if modp(n,5) = 0 then
            %-binomial(2*n/5+1,n/5) ;
        end if;
        %/(2*n+5) ;
    end proc:
    seq(A050183(n),n=0..40) ; # R. J. Mathar, Oct 28 2021
  • PARI
    a(n) = (1/(2*n+5))*sumdiv(gcd(n,5), d, moebius(d)*binomial((2*n+5)/d, n/d)); \\ Michel Marcus, Dec 05 2017

Formula

From Petros Hadjicostas, Dec 03 2017: (Start)
a(n) = (1/(2*n+5))*Sum_{d|gcd(n,5)} mu(d)*binomial((2*n+5)/d, n/d). (This is a special case of A. Howroyd's formula for double array A051168.)
a(n) = (1/(2*n+5))*(binomial(2*n+5, n) - binomial((2*n/5)+1, n/5)) if 5|n; = (1/(2*n+5))*binomial(2*n+5, n) otherwise.
(End)