A050205 Triangle read by rows: number of terms in unit fraction representation of k/n using the greedy algorithm, 1<=k<=n-1.
1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 2, 2, 1, 2, 3, 2, 3, 3, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 3, 3, 1, 1, 2, 2, 1, 2, 2, 3, 3, 1, 2, 2, 2, 3, 2, 3, 4, 4, 4, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 3, 3, 3, 4, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 3
Offset: 2
Examples
2/3 = 1/2 + 1/6. So T(3,2) = 2. n\k | 1 2 3 4 5 6 7 8 ----*------------------------ 2 | 1; 3 | 1, 2; 4 | 1, 1, 2; 5 | 1, 2, 2, 3; 6 | 1, 1, 1, 2, 2; 7 | 1, 2, 3, 2, 3, 3; 8 | 1, 1, 2, 1, 2, 2, 3; 9 | 1, 2, 1, 2, 2, 2, 3, 3;
Links
- Seiichi Manyama, Rows n = 2..141, flattened
- Eric Weisstein's World of Mathematics, Unit Fraction.
- Wikipedia, Greedy algorithm for Egyptian fractions.
Extensions
Offset changed to 2 by Seiichi Manyama, Sep 18 2022