cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A343304 a(0) = a(1) = a(2) = 1; a(n) = a(n-3) + Sum_{k=0..n-4} a(k) * a(n-k-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 10, 16, 25, 40, 66, 109, 179, 296, 495, 831, 1396, 2353, 3985, 6770, 11523, 19657, 33621, 57633, 98969, 170245, 293371, 506371, 875284, 1515029, 2625842, 4556806, 7916943, 13769900, 23975073, 41785251, 72894759, 127279673, 222430235, 389030773, 680946436, 1192794189
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = a[n - 3] + Sum[a[k] a[n - k - 4], {k, 0, n - 4}]; Table[a[n], {n, 0, 43}]
    nmax = 43; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 A[x] + x^4 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 * A(x) + x^4 * A(x)^2.

A343305 a(0) = ... = a(3) = 1; a(n) = a(n-4) + Sum_{k=0..n-5} a(k) * a(n-k-5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 11, 17, 25, 36, 53, 81, 125, 191, 289, 439, 675, 1046, 1621, 2506, 3877, 6023, 9395, 14681, 22947, 35890, 56231, 88285, 138825, 218493, 344145, 542618, 856597, 1353766, 2141383, 3389797, 5370219, 8514773, 13511673, 21456808, 34096503, 54216636
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = a[n - 4] + Sum[a[k] a[n - k - 5], {k, 0, n - 5}]; Table[a[n], {n, 0, 45}]
    nmax = 45; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x] + x^5 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x) + x^5 * A(x)^2.

A346047 a(0) = a(1) = a(2) = 1; a(n) = Sum_{k=1..n-3} a(k) * a(n-k-3).

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 2, 2, 4, 8, 10, 13, 24, 42, 61, 90, 156, 265, 410, 646, 1093, 1834, 2948, 4789, 8050, 13475, 22129, 36570, 61435, 103039, 171384, 286156, 481691, 810502, 1359194, 2284789, 3856974, 6512001, 10982193, 18550116, 31406597, 53194727, 90082902
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 02 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Sum[a[k] a[n - k - 3], {k, 1, n - 3}]; Table[a[n], {n, 0, 42}]
    nmax = 42; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 A[x] (A[x] - 1) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 * A(x) * (A(x) - 1).
a(n) ~ sqrt((3 - 3*r^3 - 4*r^4 - 2*r^5)/(8*Pi)) / (n^(3/2) * r^(n+3)), where r = 0.5701490701528437821032230160646366013461622472504286581627... is the root of the equation 1 - 2*r^3 - 4*r^4 - 4*r^5 + r^6 = 0. - Vaclav Kotesovec, Jul 03 2021

A108296 Diagonal sums of the number triangle associated to A086617.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 24, 43, 78, 144, 269, 509, 971, 1868, 3618, 7049, 13805, 27162, 53661, 106405, 211697, 422458, 845386, 1696017, 3410522, 6873060, 13878721, 28077439, 56900936, 115501012, 234807488, 478032437, 974507543, 1989123814
Offset: 0

Views

Author

Paul Barry, May 31 2005

Keywords

Comments

The triangle associated to A086617 is given by T(n,k)=if(k<=n, sum{j=0..n-k, C(n-k,j)C(k,j)C(j)},0). A050253(n)=A108296(n+2)-A108296(n).

Formula

G.f.: (1-x^2-sqrt(1-2*x^2-4*x^3-3*x^4))/(2*x^3*(1-x^2)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-2*k} binomial(n-2*k, j)*binomial(k, j) * A000108(j).
Conjecture: (n+3)*a(n) +(-n-2)*a(n-1) +2*(-n-1)*a(n-2) +2*(-n+3)*a(n-3) +(n+1)*a(n-4) +3*(n-2)*a(n-5)=0. - R. J. Mathar, Nov 16 2012
Showing 1-4 of 4 results.