cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A050253 G.f.: ( 1 - x^2 - sqrt( 1 - 2*x^2 - 4*x^3 - 3*x^4 ) ) / ( 2*x^3 ).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 54, 101, 191, 365, 702, 1359, 2647, 5181, 10187, 20113, 39856, 79243, 158036, 316053, 633689, 1273559, 2565136, 5177043, 10468199, 21204379, 43022215, 87423573, 177906552, 362531425, 739700055, 1511091377
Offset: 0

Views

Author

Emanuele Munarini, May 09 2003

Keywords

Comments

a(n)=number of Motzkin (n-1)-paths (A001006) containing no three consecutive weakly-rising steps (n>=1). A weakly-rising step is an upstep or flatstep. For example, a(5)=5 counts FUDF, UDFF, UDUD, UFDF, UUDD while the path FUFD, say, is not counted because the first 3 steps are weakly-rising. - David Callan, Oct 25 2004
Hankel transform is A010892(n+1). - Paul Barry, Jul 29 2010

Programs

  • Maple
    f:= gfun:-rectoproc({(3+3*n)*a(n)+(10+4*n)*a(1+n)+(2*n+8)*a(n+2)+(-7-n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2}, a(n), remember):
    map(f, [$0..50]); # Robert Israel, Jan 15 2018
  • Mathematica
    CoefficientList[Series[(1-x^2-Sqrt[1-2x^2-4x^3-3x^4])/(2x^3),{x,0,40}],x] (* Harvey P. Dale, Jul 17 2015 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(((sum(binomial(j,n-k-j)*binomial(k,j),j,0,k))*binomial(n-k,k-1))/k,k,1,n); /* Vladimir Kruchinin, Nov 21 2014 */

Formula

a(n) = A108296(n+2) - A108296(n). - Paul Barry, May 31 2005
G.f.: 1/(1-x-x^3/(1-x^2-x^3/(1-x-x^3/(1-x^2-x^3/(1-x-x^3/(1-... (continued fraction). - Paul Barry, May 25 2009
G.f.: 1/(1-x/(1-x^2/(1-x^3/(1-x/(1-x^2/(1-x^3/(1-x/(1-x^2/(1-x^3/(1-... (continued fraction). - Paul Barry, Jul 29 2010
D-finite with recurrence: (n+3)*a(n) + (n+2)*a(n-1) - 2n*a(n-2) + 2*(4-3n)*a(n-3) + (19-7n)*a(n-4) + 3*(4-n)*a(n-5) = 0. - R. J. Mathar, Nov 15 2011
From Robert Israel, Jan 15 2018: (Start)
Recurrence verified using the differential equation (3*x^5+4*x^4+2*x^3-x)*y' + (3*x^4+6*x^3+4*x^2-3)*y + x^2+4*x+3 = 0 satisfied by the g.f.
(3+3*n)*a(n) + (10+4*n)*a(1+n) + (2*n+8)*a(n+2) + (-7-n)*a(n+4) = 0. (End)
a(n) = Sum_{k=1..n} (Sum_{j=0..k} C(j,n-k-j)*C(k,j))*C(n-k,k-1)/k for n > 0. - Vladimir Kruchinin, Nov 21 2014
G.f. A(x) satisfies A(x) = x*(1+sqrt(1+4*(A(x)+A(x)^2+A(x)^3)))/2. - Vladimir Kruchinin, Nov 21 2014
a(0) = a(1) = 1; a(n) = a(n-2) + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Apr 11 2021
a(n) ~ sqrt(6 + 3*r - 6*r^2) * (6 + 5*r + 6*r^2) * (1 + r + 3*r^2)^n / (6*sqrt(Pi)*n^(3/2)), where r = 0.4693964245699946792019209673920017843813793... is the root of the equation 3*r^3 + r^2 + r - 1 = 0. - Vaclav Kotesovec, Jul 03 2021
Showing 1-1 of 1 results.