A050255 A Diaconis-Mosteller approximation to the Birthday problem function.
1, 23, 88, 187, 313, 459, 622, 797, 983, 1179, 1382, 1592, 1809, 2031, 2257, 2489, 2724, 2963, 3205, 3450, 3698, 3949, 4203, 4459, 4717, 4977, 5239, 5503, 5768, 6036, 6305, 6575, 6847, 7121, 7395, 7671, 7948, 8227, 8506, 8787, 9068, 9351, 9634, 9919, 10204
Offset: 1
Keywords
Links
- _Stig Blücher Brink_, Table of n, a(n) for n = 1..10000
- P. Diaconis and F. Mosteller, Methods of studying coincidences, J. Amer. Statist. Assoc. 84 (1989), pp. 853-861.
- Eric Weisstein's World of Mathematics, Birthday Problem
Programs
-
Mathematica
a[n_]:=Ceiling[x /. N[Solve[x Exp[-x/(365 n)]==(365^(n-1) n! Log[2] (1-x/(365 (n+1))))^(1/n), x, Reals]]]; Flatten[Table[a[n], {n, 15}]] (* Iain Fox, Oct 26 2018 *)
Formula
a(n) is ceiling(x), where x is the real solution to x*exp(-x/(365*n)) = (log(2)*365^(n-1)*n!*(1 - x/(365*(n+1))))^(1/n). - Iain Fox, Oct 26 2018
Extensions
a(43)-a(45) from Alois P. Heinz, May 17 2023
Comments