A050322 Number of factorizations indexed by prime signatures: A001055(A025487).
1, 1, 2, 2, 3, 4, 5, 7, 5, 7, 9, 12, 11, 11, 16, 19, 21, 15, 29, 26, 30, 15, 31, 38, 22, 47, 52, 45, 36, 57, 64, 30, 77, 98, 67, 74, 97, 66, 105, 42, 109, 118, 92, 109, 171, 97, 141, 162, 137, 165, 56, 212, 181, 52, 198, 189, 289, 139, 250, 257, 269, 254, 77, 382, 267
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Jan 13 2020: (Start) The a(1) = 1 through a(11) = 9 factorizations: {} 2 4 6 8 12 16 24 30 32 36 2*2 2*3 2*4 2*6 2*8 3*8 5*6 4*8 4*9 2*2*2 3*4 4*4 4*6 2*15 2*16 6*6 2*2*3 2*2*4 2*12 3*10 2*2*8 2*18 2*2*2*2 2*2*6 2*3*5 2*4*4 3*12 2*3*4 2*2*2*4 2*2*9 2*2*2*3 2*2*2*2*2 2*3*6 3*3*4 2*2*3*3 (End)
Links
- R. J. Mathar and Michael De Vlieger, Table of n, a(n) for n = 1..5000 (First 300 terms from _R. J. Mathar_)
- R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
- Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
Crossrefs
The version indexed by unsorted prime signature is A331049.
Programs
-
Maple
A050322 := proc(n) A001055(A025487(n)) ; end proc: # R. J. Mathar, May 25 2017
-
Mathematica
c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{d, i}, d = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/d[[i]], d[[i]]], {i, 1, Length[d]}]]; Map[c[#, #] &, Union@ Table[Times @@ MapIndexed[If[n == 1, 1, Prime[First@ #2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, Product[Prime@ i, {i, 6}]}]] (* Michael De Vlieger, Jul 10 2017, after Dean Hickerson at A001055 *) facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Length/@facs/@First/@GatherBy[Range[1000],If[#==1,{},Sort[Last/@FactorInteger[#]]]&] (* Gus Wiseman, Jan 13 2020 *)
Comments