cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A130839 Sequence related to factorizations and prime signatures: a(1) = 1; for n>1,a(n) = A108464(n) - 2*A050322(n).

Original entry on oeis.org

1, 0, 0, 1, 1, 3, 2, 7, 5, 5, 8, 14, 14, 8, 20, 26, 32, 15, 40, 40, 45, 22, 47, 65, 23, 77, 94, 75, 63, 98, 122, 37, 135, 196, 120, 148, 188, 117, 216, 55, 226, 231, 187, 206, 377, 187, 310, 338, 286, 366, 83, 483, 375, 99, 454, 405, 683, 284, 598
Offset: 1

Views

Author

Alford Arnold, Jul 19 2007

Keywords

Crossrefs

A001055 The multiplicative partition function: number of ways of factoring n with all factors greater than 1 (a(1) = 1 by convention).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2, 2, 2, 7, 1, 11, 2, 4, 2, 2, 2, 19, 1, 4, 4, 9, 1, 5, 1
Offset: 1

Views

Author

Keywords

Comments

From David W. Wilson, Feb 28 2009: (Start)
By a factorization of n we mean a multiset of integers > 1 whose product is n.
For example, 6 is the product of 2 such multisets, {2, 3} and {6}, so a(6) = 2.
Similarly 8 is the product of 3 such multisets, {2, 2, 2}, {2, 4} and {8}, so a(8) = 3.
1 is the product of 1 such multiset, namely the empty multiset {}, whose product is by definition the multiplicative identity 1. Hence a(1) = 1. (End)
a(n) = # { k | A064553(k) = n }. - Reinhard Zumkeller, Sep 21 2001; Benoit Cloitre and N. J. A. Sloane, May 15 2002
Number of members of A025487 with n divisors. - Matthew Vandermast, Jul 12 2004
See sequence A162247 for a list of the factorizations of n and a program for generating the factorizations for any n. - T. D. Noe, Jun 28 2009
So a(n) gives the number of different prime signatures that can be found among the integers that have n divisors. - Michel Marcus, Nov 11 2015
For n > 0, also the number of integer partitions of n with product n, ranked by A301987. For example, the a(12) = 4 partitions are: (12), (6,2,1,1,1,1), (4,3,1,1,1,1,1), (3,2,2,1,1,1,1,1). See also A380218. In general, A379666(m,n) = a(n) for any m >= n. - Gus Wiseman, Feb 07 2025

Examples

			1: 1, a(1) = 1
2: 2, a(2) = 1
3: 3, a(3) = 1
4: 4 = 2*2, a(4) = 2
6: 6 = 2*3, a(6) = 2
8: 8 = 2*4 = 2*2*2, a(8) = 3
etc.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995, p. 198, exercise 9 (in the third edition 2015, p. 296, exercise 211).

Crossrefs

A045782 gives the range of a(n).
For records see A033833, A033834.
Row sums of A316439 (for n>1).
Cf. A096276 (partial sums).
The additive version is A000041 (integer partitions), strict A000009.
Row sums of A318950.
A002865 counts partitions into parts > 1.
A069016 counts distinct sums of factorizations.
A319000 counts partitions by product and sum, row sums A319916.
A379666 (transpose A380959) counts partitions by sum and product, without 1's A379668, strict A379671.

Programs

  • Haskell
    a001055 = (map last a066032_tabl !!) . (subtract 1)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Java
    public class MultiPart {
        public static void main(String[] argV) {
            for (int i=1;i<=100;++i) System.out.println(1+getDivisors(2,i));
        }
        public static int getDivisors(int min,int n) {
            int total = 0;
            for (int i=min;i=i) { ++total; if (n/i>i) total+=getDivisors(i,n/i); }
            return total;
        }
    } \\ Scott R. Shannon, Aug 21 2019
  • Maple
    with(numtheory):
    T := proc(n::integer, m::integer)
            local A, summe, d:
            if isprime(n) then
                    if n <= m then
                            return 1;
                    end if:
                    return 0 ;
            end if:
            A := divisors(n) minus {n, 1}:
            for d in A do
                    if d > m then
                            A := A minus {d}:
                    end if:
            end do:
            summe := add(T(n/d,d),d=A) ;
            if n <=m then
                    summe := summe + 1:
            end if:
            summe ;
    end proc:
    A001055 := n -> T(n, n):
    [seq(A001055(n), n=1..100)]; # Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r] = Module[{ds, i}, ds = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n, n]; a/@Range[100] (* c[n, r] is the number of factorizations of n with factors <= r. - Dean Hickerson, Oct 28 2002 *)
    T[, 1] = T[1, ] = 1;
    T[n_, m_] := T[n, m] = DivisorSum[n, Boole[1 < # <= m] * T[n/#, #]&];
    a[n_] := T[n, n];
    a /@ Range[100] (* Jean-François Alcover, Jan 03 2020 *)
  • PARI
    /* factorizations of n with factors <= m (n,m positive integers) */
    fcnt(n,m) = {local(s);s=0;if(n == 1,s=1,fordiv(n,d,if(d > 1 & d <= m,s=s+fcnt(n/d,d))));s}
    A001055(n) = fcnt(n,n) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    \\ code using Dirichlet g.f., based on Somos's code for A007896
    {a(n) = my(A, v, w, m);
    if(
    n<1, 0,
    \\ define unit vector v = [1, 0, 0, ...] of length n
    v = vector(n, k, k==1);
    for(k=2, n,
    m = #digits(n, k) - 1;
    \\ expand 1/(1-x)^k out far enough
    A = (1 - x)^ -1 + x * O(x^m);
    \\ w = zero vector of length n
    w = vector(n);
    \\ convert A to a vector
    for(i=0, m, w[k^i] = polcoeff(A, i));
    \\ build the answer
    v = dirmul(v, w)
    );
    v[n]
    )
    };
    \\ produce the sequence
    vector(100,n,a(n)) \\ N. J. A. Sloane, May 26 2014
    
  • PARI
    v=vector(100, k, k==1); for(n=2, #v, v+=dirmul(v, vector(#v, k, (k>1) && n^valuation(k,n)==k)) ); v \\ Max Alekseyev, Jul 16 2014
    
  • Python
    from sympy import divisors, isprime
    def T(n, m):
        if isprime(n): return 1 if n<=m else 0
        A=filter(lambda d: d<=m, divisors(n)[1:-1])
        s=sum(T(n//d, d) for d in A)
        return s + 1 if n<=m else s
    def a(n): return T(n, n)
    print([a(n) for n in range(1, 106)]) # Indranil Ghosh, Aug 19 2017
    

Formula

The asymptotic behavior of this sequence was studied by Canfield, Erdős & Pomerance and Luca, Mukhopadhyay, & Srinivas. - Jonathan Vos Post, Jul 07 2008
Dirichlet g.f.: Product_{k>=2} 1/(1 - 1/k^s).
If n = p^k for a prime p, a(n) = partitions(k) = A000041(k).
Since the sequence a(n) is the right diagonal of A066032, the given recursive formula for A066032 applies (see Maple program). - Reinhard Zumkeller and Ulrich Schimke (ulrschimke(AT)aol.com)
a(A002110(n)) = A000110(n).
a(p^k*q^k) = A002774(k) if p and q are distinct primes. - R. J. Mathar, Jun 06 2024
a(n) = A028422(n) + 1. - Gus Wiseman, Feb 07 2025

Extensions

Incorrect assertion about asymptotic behavior deleted by N. J. A. Sloane, Jun 08 2009

A051282 2-adic valuation of A025487: largest k such that 2^k divides A025487(n), where A025487 gives products of primorials.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 3, 1, 5, 2, 4, 2, 6, 3, 5, 3, 7, 4, 2, 6, 1, 3, 4, 8, 5, 3, 7, 2, 4, 5, 9, 6, 4, 8, 3, 5, 2, 6, 10, 3, 7, 2, 4, 5, 9, 4, 6, 3, 7, 11, 4, 8, 1, 3, 5, 6, 10, 5, 7, 4, 8, 12, 5, 9, 2, 4, 6, 3, 7, 11, 2, 4, 6, 8, 5, 3, 9, 5, 13, 6, 10, 3, 5, 7, 4, 8, 12, 3, 5, 7, 9, 2, 6, 4, 10, 6, 14, 7, 11, 4, 6, 8, 5, 9, 13, 4, 6, 8, 3, 10, 3, 7, 1, 5, 11, 7, 4
Offset: 1

Views

Author

Keywords

Comments

a(n) can be used for resorting A025487 and sequences indexed by A025487, e.g., A050322, A050323, A050324 and A050325.
a(n) is the number of primorial numbers (A002110) larger than 1 in the representation of A025487(n) as a product of primorial numbers. - Amiram Eldar, Jun 03 2023

Examples

			a(8) = 3 because A025487(8) = 24 and 2^3 divides 24.
		

Crossrefs

Programs

  • Haskell
    a051282 = a007814 . a025487  -- Reinhard Zumkeller, Apr 06 2013
    
  • Mathematica
    max = 40000; A025487 = {1}; lpe = {}; Do[ pe = Sort[ FactorInteger[n][[All, 2]]]; If[FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[A025487, n]], {n, 2, max}]; a[n_] := FactorInteger[ A025487[[n]] ][[1, 2]]; a[1] = 0; Table[a[n], {n, 1, Length[A025487]}] (* Jean-François Alcover, Jun 14 2012, after Robert G. Wilson v *)
  • PARI
    isA025487(n)=my(k=valuation(n, 2), t); n>>=k; forprime(p=3, default(primelimit), t=valuation(n, p); if(t>k, return(0), k=t); if(k, n/=p^k, return(n==1)))
    [valuation(n,2) | n <- [1..1000], isA025487(n)]
    \\ Or, for older versions:
    apply(n->valuation(n,2), select(isA025487, [1..1000])) \\ Charles R Greathouse IV, Nov 07 2014

Formula

a(n) = A007814(A025487(n)) = A051903(A025487(n)). - Matthew Vandermast, Jul 03 2012

Extensions

More terms from Naohiro Nomoto, Mar 11 2001

A317826 Number of partitions of n with carry-free sum in factorial base.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 1, 2, 2, 5, 4, 11, 2, 4, 4, 11, 9, 26, 3, 7, 7, 21, 16, 52, 1, 2, 2, 5, 4, 11, 2, 5, 5, 15, 11, 36, 4, 11, 11, 36, 26, 92, 7, 21, 21, 74, 52, 198, 2, 4, 4, 11, 9, 26, 4, 11, 11, 36, 26, 92, 9, 26, 26, 92, 66, 249, 16, 52, 52, 198, 137, 560, 3, 7, 7, 21, 16, 52, 7, 21, 21, 74, 52, 198, 16, 52, 52, 198, 137, 560, 31, 109
Offset: 0

Views

Author

Antti Karttunen, Aug 08 2018

Keywords

Comments

"Carry-free sum" in this context means that when the digits of summands (written in factorial base, see A007623) are lined up (right-justified), then summing up of each column will not result in carries to any columns left of that column, that is, the sum of digits of the k-th column from the right (with the rightmost as column 1) over all the summands is the same as the k-th digit of n, thus at most k. Among other things, this implies that in any solution, at most one of the summands may be odd. Moreover, such an odd summand is present if and only if n is odd.
a(n) is the number of set partitions of the multiset that contains d copies of each number k, collected over all k in which digit-positions (the rightmost being k=1) there is a nonzero digit d in true factorial base representation of n, where also digits > 9 are allowed.
Distinct terms are the distinct terms in A050322, that is, A045782. - David A. Corneth & Antti Karttunen, Aug 10 2018

Examples

			  n  in fact.base  a(n) carry-free partitions
------------------------------
  0     "0"         1   {}    (unique empty partition, thus a(0) = 1)
  1     "1"         1   {1}
  2    "10"         1   {2}
  3    "11"         2   {2, 1} and {3}, in fact.base: {"10", "1"} and {"11"}
  4    "20"         2   {2, 2} and {4}, in fact.base: {"10" "10"} and {"20"}
  5    "21"         4   {2, 2, 1}, {3, 2}, {4, 1} and {5},
    in factorial base:  {"10", "10", "1"}, {"11", "10"}, {"20", "1"} and {"21"}.
		

Crossrefs

Cf. A001055, A007623, A025487, A045782 (range of this sequence), A050322, A276076, A278236.
Cf. A317827 (positions of records), A317828 (record values), A317829.
Cf. also A227154, A317836.

Programs

  • PARI
    fcnt(n, m) = {local(s); s=0; if(n == 1, s=1, fordiv(n, d, if(d > 1 & d <= m, s=s+fcnt(n/d, d)))); s};
    A001055(n) = fcnt(n, n); \\ From A001055
    A276076(n) = { my(i=0,m=1,f=1,nextf); while((n>0),i=i+1; nextf = (i+1)*f; if((n%nextf),m*=(prime(i)^((n%nextf)/f));n-=(n%nextf));f=nextf); m; };
    A317826(n) = A001055(A276076(n));
    
  • PARI
    \\ Slightly faster, memoized version:
    memA001055 = Map();
    A001055(n) = {my(v); if(mapisdefined(memA001055,n), v = mapget(memA001055,n), v = fcnt(n, n); mapput(memA001055,n,v); (v));}; \\ Cached version.
    A276076(n) = { my(i=0,m=1,f=1,nextf); while((n>0),i=i+1; nextf = (i+1)*f; if((n%nextf),m*=(prime(i)^((n%nextf)/f));n-=(n%nextf));f=nextf); m; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A317826(n) = A001055(A046523(A276076(n)));

Formula

a(n) = A001055(A276076(n)) = A001055(A278236(n)).
a(A000142(n)) = 1.
a(A001563(n)) = A000041(n).
a(A033312(n+1)) = A317829(n) for n >= 1.

A093936 Table T(n,k) read by rows which contains in row n and column k the sum of A001055(A036035(n,j)) over all column indices j where A036035(n,j) has k distinct prime factors.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 16, 11, 15, 7, 28, 47, 36, 52, 11, 79, 156, 166, 135, 203, 15, 134, 408, 588, 667, 566, 877, 22, 328, 1057, 2358, 2517, 2978, 2610, 4140, 30, 536, 3036, 6181, 10726, 11913, 14548, 13082, 21147, 42, 1197, 6826, 21336, 40130, 53690, 61421
Offset: 1

Views

Author

Alford Arnold, May 23 2004

Keywords

Comments

Sequence A050322 calculates factorizations indexed by prime signatures: A001055(A025487) For example, A050322(36) = A001055(A025487(36)) = 74 and A050322(43) = A001055(A024487(43)) = 92.
Note that A093936 can be readily extended by combining appropriate values from A096443. Row sums of A093936 yield A035310 and embedded sequences include A000041, A035098 and A000110. - Alford Arnold, Nov 19 2005

Examples

			a(19) = 166 because A001055(840) + A001055(1260) = 74 + 92.
Row n=4 of A036035 contains 16=2^4, 24=2^3*3, 36=2^2*3^2, 60=2^2*3*5 and 210=2*3*5*7. The 16 has k=1 distinct prime factor; 24 and 36 have k=2 distinct prime factors; 60 has k=3 distinct prime factors; 210 has k=4 distinct prime factors (see A001221).
T(4,1)=A001055(16)=5.
T(4,2)=A001055(24)+A001055(36)=7+9=16.
T(4,3)=A001055(60)=11.
T(4,4)=A001055(210)=15.
Table starts
1;
2, 2;
3, 4, 5;
5, 16, 11, 15;
7, 28, 47, 36, 52;
11, 79, 156, 166, 135, 203;
15, 134, 408, 588, 667, 566, 877;
22, 328, 1057, 2358, 2517, 2978, 2610, 4140;
30, 536, 3036, 6181, 10726, 11913, 14548, 13082, 21147;
42, 1197, 6826, 21336, 40130, 53690, 61421, 76908, 70631, 115975;
...
		

Crossrefs

Programs

  • Maple
    A036035 := proc(n) local pr,L,a ; a := [] ; pr := combinat[partition](n) ; for L in pr do mul(ithprime(i)^op(-i,L),i=1..nops(L)) ; a := [op(a),%] ; od ; RETURN(a) ; end: A001221 := proc(n) local ifacts ; ifacts := ifactors(n)[2] ; nops(ifacts) ; end: listProdRep := proc(n,mincomp) local dvs,resul,f,i,rli ; resul := 0 ; if n = 1 then RETURN(1) elif n >= mincomp then dvs := numtheory[divisors](n) ; for i from 1 to nops(dvs) do f := op(i,dvs) ; if f =n and f >= mincomp then resul := resul+1 ; elif f >= mincomp then rli := listProdRep(n/f,f) ; resul := resul+rli ; fi ; od ; fi ; RETURN(resul) ; end: A001055 := proc(n) listProdRep(n,2) ; end: A093936 := proc(n,k) local a, a036035,j ; a := 0 ; a036035 := A036035(n) ; for j in a036035 do if A001221(j) = k then a := a+A001055(j) ; fi ; od ; RETURN(a) ; end: for n from 1 to 10 do for k from 1 to n do printf("%d,",A093936(n,k)) ; od : od : # R. J. Mathar, Jul 27 2007

Extensions

More terms from Alford Arnold, Nov 19 2005
More terms from R. J. Mathar, Jul 27 2007

A331049 Number of factorizations of A055932(n), the least representative of the n'th distinct unsorted prime signature, into factors > 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 4, 7, 5, 7, 9, 12, 7, 11, 11, 16, 11, 19, 16, 21, 15, 29, 11, 12, 26, 30, 15, 31, 38, 22, 21, 47, 26, 29, 52, 45, 36, 57, 26, 64, 19, 30, 52, 77, 52, 36, 57, 98, 21, 67, 38, 74, 97, 66, 105, 47, 42, 36, 109, 118, 98, 92, 109, 52, 171, 30
Offset: 1

Views

Author

Gus Wiseman, Jan 10 2020

Keywords

Comments

A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. Factorizations are counted by A001055.
The unsorted prime signature of A055932(n) is given by row n of A124829.

Examples

			The a(1) = 1 through a(11) = 7 factorizations:
  {}  2  4    6    8      12     16       18     24       30     32
         2*2  2*3  2*4    2*6    2*8      2*9    3*8      5*6    4*8
                   2*2*2  3*4    4*4      3*6    4*6      2*15   2*16
                          2*2*3  2*2*4    2*3*3  2*12     3*10   2*2*8
                                 2*2*2*2         2*2*6    2*3*5  2*4*4
                                                 2*3*4           2*2*2*4
                                                 2*2*2*3         2*2*2*2*2
		

Crossrefs

The sorted-signature version is A050322.
This sequence has range A045782.
Factorizations are A001055.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Length@*facs/@First/@GatherBy[Range[1500],If[#==1,{},Last/@FactorInteger[#]]&]

Formula

a(n) = A001055(A055932(n)).

A131997 Array read by rows in which the n-th row contains odd numbers of all possible prime signatures with n divisors.

Original entry on oeis.org

1, 3, 9, 27, 15, 81, 243, 45, 729, 2187, 135, 105, 6561, 225, 19683, 405, 59049, 177147, 1215, 315, 675
Offset: 1

Views

Author

Alford Arnold, Aug 18 2007

Keywords

Examples

			Row 12 of A131886 is 2048 96 72 60 so here row 12 is 177147 1215 315 675.
		

Crossrefs

A369713 a(n) is the sum over all multiplicative partitions k of n of the absolute value of the Möbius function evaluated at k,n in the poset of multiplicative partitions of n under refinement.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 2, 4, 1, 6, 1, 6, 2, 2, 2, 11, 1, 2, 2, 8, 1, 6, 1, 4, 4, 2, 1, 16, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 16, 1, 2, 4, 11, 2, 6, 1, 4, 2, 6, 1, 24, 1, 2, 4, 4, 2, 6, 1, 16, 5, 2, 1, 16, 2
Offset: 1

Views

Author

Tian Vlasic, Jan 29 2024

Keywords

Comments

If x and y are factorizations of the same integer and it is possible to produce x by further factoring the factors of y, flattening, and sorting, then x <= y.
For every natural number n, a(n) only depends on the prime signature of n.
a(n) is even if and only if n is a composite number.
Conjecture: There exists c such that a(n) <= n^c for all natural numbers n.

Examples

			The factorizations of 60 followed by their Moebius values are the following:
 (2*2*3*5) -> -3
 (2*2*15) ->  1
 (2*3*10) ->  2
 (2*5*6) ->  2
 (2*30) -> -1
 (3*4*5) ->  2
 (3*20) -> -1
 (4*15) -> -1
 (5*12) -> -1
 (6*10) -> -1
 (60) ->  1
Thus a(60)=16.
		

Crossrefs

Showing 1-8 of 8 results.