cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A181815 a(n) = largest integer such that, when any of its divisors divides A025487(n), the quotient is a member of A025487.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 12, 5, 32, 9, 24, 10, 64, 18, 48, 20, 128, 36, 15, 96, 7, 27, 40, 256, 72, 30, 192, 14, 54, 80, 512, 144, 60, 384, 28, 108, 25, 160, 1024, 45, 288, 21, 81, 120, 768, 56, 216, 50, 320, 2048, 90, 576, 11, 42, 162, 240, 1536, 112, 432, 100, 640, 4096, 180, 1152
Offset: 1

Views

Author

Matthew Vandermast, Nov 30 2010

Keywords

Comments

A permutation of the natural numbers.
The number of divisors of a(n) equals the number of ordered factorizations of A025487(n) as A025487(j)*A025487(k). Cf. A182762.
From Antti Karttunen, Dec 28 2019: (Start)
Rearranges terms of A108951 into ascending order, as A108951(a(n)) = A025487(n).
The scatter plot looks like a curtain of fractal spray, which is typical for many of the so-called "entanglement permutations". Indeed, according to the terminology I use in my 2016-2017 paper, this sequence is obtained by entangling the complementary pair (A329898, A330683) with the complementary pair (A005843, A003961), which gives the following implicit recurrence: a(A329898(n)) = 2*a(n) and a(A330683(n)) = A003961(a(n)). An explicit form is given in the formula section.
(End)

Examples

			For any divisor d of 9 (d = 1, 3, 9), 36/d (36, 12, 4) is a member of A025487. 9 is the largest number with this relationship to 36; therefore, since 36 = A025487(11), a(11) = 9.
		

Crossrefs

If this sequence is considered the "primorial deflation" of A025487(n) (see first formula), the primorial inflation of n is A108951(n), and the primorial inflation of A025487(n) is A181817(n).
A181820(n) is another mapping from the members of A025487 to the positive integers.

Programs

  • Mathematica
    (* First, load the program at A025487, then: *)
    Map[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, Union@ Flatten@ f@ 6] (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    A181815(n) = A329900(A025487(n)); \\ Antti Karttunen, Dec 24 2019

Formula

If A025487(n) is considered in its form as Product A002110(i)^e(i), then a(n) = Product p(i)^e(i). If A025487(n) is instead considered as Product p(i)^e(i), then a(n) = Product (p(i)/A008578(i))^e(i).
a(n) = A122111(A181820(n)). - Matthew Vandermast, May 21 2012
From Antti Karttunen, Dec 24-29 2019: (Start)
a(n) = Product_{i=1..A051282(n)} A000040(A304886(i)).
a(n) = A329900(A025487(n)) = A319626(A025487(n)).
a(n) = A163511(A329905(n)).
For n > 1, if A330682(n) = 1, then a(n) = A003961(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
A252464(a(n)) = A329907(n).
A330690(a(n)) = A050378(n).
a(A306802(n)) = A329902(n).
(End)

A304886 Irregular triangle where row n contains indices k where the product of A002110(k) = A025487(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Michael De Vlieger, May 21 2018

Keywords

Comments

Row n consists of terms k such that A025487(n) = the product of primorials p_k#, the k in row n written least to greatest k.
For m = A025487(n) in A000079 (i.e., m is an integer power of 2), row n contains A000079(m) 1s.
For m = A025487(n) in A002110 (i.e., m is a primorial) row n contains a single term k that is the index of m in A002110.

Examples

			Triangle begins as in rightmost column, which lists the terms that occur on row n. Maximum value of each row is given by A061394(n).
   n  A025487(n)   Row n
--------------------------------
   1        1      0
   2        2      1
   3        4      1,1
   4        6      2
   5        8      1,1,1
   6       12      1,2
   7       16      1,1,1,1
   8       24      1,1,2
   9       30      3
  10       32      1,1,1,1,1
  11       36      2,2
  12       48      1,1,1,2
  13       60      1,3
  14       64      1,1,1,1,1,1
  15       72      1,2,2
  16       96      1,1,1,1,2
  17      120      1,1,3
  18      128      1,1,1,1,1,1,1
  19      144      1,1,2,2
  20      180      2,3
  ...
		

Crossrefs

Cf. A025487, A051282 (row lengths), A061394 (row maximum), A124832, A181815.
Cf. also A307056.

Programs

  • Mathematica
    (* Simple (A025487(n) < 10^5): *)
    {{0}}~Join~Map[With[{w = #}, Reverse@ Array[Function[k, Count[w, _?(# >= k &)] ], Max@ w]] &, Select[Array[{#, FactorInteger[#][[All, -1]]} &, 400], Times @@ Boole@ {#1 == Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3], #2 == #3} == 1 & @@ {#1, #2, Sort[#2, Greater]} & @@ # &][[All, -1]] ]
    (* Efficient (A025487(n) < 10^23): *)
    f[n_] := Block[{ww, g, h},
      g[x_] := Apply[Times,
        MapIndexed[Prime[First@ #2]^#1 &, x]];
      h[x_] := Reverse@
        Array[Function[k, Count[x, _?(# >= k &)] ], Max@ x];
      ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 +
         Length@ NestWhileList[NextPrime@ # &, 1,
         Times @@ {##} <= n &, All] ];
      Map[h, SortBy[Flatten[#, 1], g]] &@
       Map[Block[{w = #, k = 1},
          Apply[
             Join, {{ConstantArray[1, Length@ w]},
               If[Length@ # == 0, #, #[[1]]] }] &@ Reap[
             Do[
              If[# < n,
                Sow[w]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@
                   g@ Set[w,
                   If[k == 1,
                     MapAt[# + 1 &, w, k],
                     PadLeft[#, Length@ w, First@ #] &@
                       Drop[MapAt[# + Boole[i > 1] &, w, k],
                        k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; {{0}}~Join~f@ 400

Formula

For row n > 1, Product_{k=1..A051282(n)} A000040(T(n,k)) = A181815(n). [Product of primes indexed by nonzero terms of row n is equal to A181815(n)] - Antti Karttunen, Dec 28 2019

A249771 Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order A025487(n) with k invariant factors (2 <= n, 1 <= k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 5, 2, 2, 1, 3, 1, 3, 3, 2, 1, 1, 1, 1, 3, 5, 1, 2
Offset: 2

Views

Author

Álvar Ibeas, Nov 06 2014

Keywords

Comments

The length of n-th row is A051282(n).
Signatures differing only by a (trailing) list of ones give identical rows.

Examples

			First rows:
1;
1,1;
1;
1,1,1;
1,1;
1,2,1,1;
1,1,1;
1;
1,2,2,1,1;
1,3;
...
		

Crossrefs

Refinement of A050360. Last row elements: A249773. Cf. A249770, A052304.

Formula

T(n,1) = 1. If k > 1 and the prime signature is (e_1,...,e_s), T(n,k) = Sum(Product(A008284(e_i,k), i in I) * Product(A026820(e_i,k-1), i not in I)), where the sum is taken over nonempty subsets I of {1,...,s}.
T(n,k) = A249770(A025487(n),k).
T(n,1) + T(n,2) = A052304(n).

A249773 Number of Abelian groups that attain the maximum number of invariant factors among those whose order is A025487(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 5, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 7, 1, 1, 5, 2, 3, 9, 2, 1, 1, 3, 4, 1, 1, 3, 2, 1, 2, 5, 2, 1, 1, 3, 4, 1, 1, 3, 2, 1, 2, 5, 10, 2, 1, 7, 9, 1, 3, 4, 5, 1, 13, 1, 3, 2, 1, 2, 5, 6
Offset: 1

Views

Author

Álvar Ibeas, Nov 07 2014

Keywords

Comments

The number of invariant factors (i.e., the minimum size of generating sets) of these groups is A051282(n).
If the n-th and m-th least (according to the ordering of A025487) prime signatures differ only by a (trailing) list of ones, a(n) = a(m).

Examples

			A025487(15) = 72. An Abelian group of order 72 can have 1, 2, or 3 invariant factors. The instances of the last case are C18 x C2 x C2 and C6 x C6 x C2, hence a(15)=2.
		

Crossrefs

Last row elements of A249771. Cf. A025487, A051282.

Formula

(p(e_1)^j - (p(e_1)-1)^j) * Product(p(e_i), i=j+1..s), if the prime signature is (e_i, i=1..s) and e_1 = ... = e_j != e_{j+1}.

A363455 The number of distinct primorial numbers (A002110) larger than 1 in the representation of A025487(n) as a product of primorial numbers.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 1, 3, 2, 1, 3, 2, 3, 2, 2, 2, 2, 2, 1, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 3, 2, 2, 3, 2, 3, 3
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2023

Keywords

Comments

The number of distinct exponents in the prime factorization of A025487(n).
The minimal number of powers of primorial numbers (A100778) in the representation of A025487(n) as a product of powers of primorial numbers.
The record values are all the nonnegative integers. The positions of the records are the positions of the terms of the Chernoff sequence (A006939) in A025487, i.e., the first position of k, for k = 0, 1, 2, ..., is A363456(k).

Crossrefs

Programs

  • Mathematica
    e[1] = 0; e[n_] := Length[Union[FactorInteger[n][[;; , 2]]]]; s = {0}; Do[If[GreaterEqual @@ (f = FactorInteger[n])[[;; , 2]] && PrimePi[f[[-1, 1]]] == Length[f], AppendTo[s, e[n]]], {n, 2, 10000}]; s

Formula

a(n) = A071625(A025487(n)).

A051466 Largest product of primorials less than A025487(n) that divides A025487(n).

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 12, 6, 16, 12, 24, 30, 32, 36, 48, 60, 64, 72, 60, 96, 30, 72, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 180, 480, 512, 360, 576, 420, 432, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 210, 1260, 1296, 1440
Offset: 2

Views

Author

Keywords

Comments

Note that A036041(A025487(n)) = A036041(a(n)) + 1 since A025487(n)/a(n) is prime.

Examples

			A025487 = 1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, ...; a(n)= 1, 2, 2, 4, 6, 8, 12, 6, 16, 12, ... . (12 divides 36, but 16 through 32 do not.)
A025487(38) = 900 = 5#*5#. The largest product of primorials that divides this number will be 5#*3# = 180 = a(38). - _Charlie Neder_, Oct 20 2018
		

Crossrefs

Programs

  • Haskell
    a051466 n = a051466_list !! (n-2)
    a051466_list = f [head a025487_list] $ tail a025487_list where
       f us (v:vs) = fromJust (find (\x -> mod v x == 0) us) : f (v : us) vs
    -- Reinhard Zumkeller, Jul 17 2013
  • Mathematica
    (* First, load second program at A025487, then: *)
    With[{s = Union@ Flatten@ f[5]}, Table[SelectFirst[Reverse@ Take[s, n - 1], Mod[s[[n]], #] == 0 &], {n, 2, Length@ s}]] (* Michael De Vlieger, Dec 27 2019 *)

Formula

a(n) = A025487(n) / p, where p is the largest prime such that p^A051282(n) | A025487(n). - Charlie Neder, Oct 12 2018

Extensions

Offset updated by Matthew Vandermast, Jul 03 2012
Name edited by Charlie Neder, Oct 20 2018
Name clarified by Antti Karttunen, Dec 24 2019

A363457 Positions of products of distinct primorial numbers (A129912) in the sequence of products of primorial numbers (A025487).

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 20, 22, 27, 29, 43, 54, 55, 66, 72, 89, 93, 112, 114, 123, 140, 147, 150, 175, 186, 223, 232, 242, 246, 274, 279, 285, 290, 332, 371, 376, 425, 433, 439, 442, 488, 500, 518, 535, 539, 570, 619, 624, 656, 718, 747, 761, 783, 789, 816, 831, 860
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2023

Keywords

Comments

Numbers k such that A025487(k) is a term of A129912.
Numbers k such that A051282(k) = A363455(k).
What is the asymptotic behavior of this sequence? Empirically, it seems that a(n) ~ A * n^c, where A and c are constants.

Crossrefs

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    prod = Cases[Import["https://oeis.org/A129912/b129912.txt", "Table"], {, }][[;; , 2]];
    Position[lps, #] & /@ prod // Flatten

Formula

A025487(a(n)) = A129912(n).

A060826 a(n) is the largest number such that 3^a(n) [also 6^a(n)] divides A025487(n) (least prime signatures).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1, 3, 1, 0, 2, 2, 1, 1, 3, 1, 0, 2, 2, 1, 1, 3, 2, 1, 0, 3, 2, 2, 4, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 2, 4, 2, 1, 1, 3, 2, 1, 0, 3, 2, 1, 2, 4, 3, 2, 1, 2, 4, 1, 3, 2, 3, 1, 5, 0, 3, 2, 1, 2, 4, 3, 2, 1, 2, 4, 1, 3, 2, 2, 3, 1, 5, 0, 3, 2, 1, 2, 4, 3, 2
Offset: 1

Views

Author

Henry Bottomley, Apr 30 2001

Keywords

Crossrefs

Formula

a(n) = A007949(A025487(n)) = A122841(A025487(n)). - Amiram Eldar, Dec 29 2020

Extensions

Name edited and offset corrected by Amiram Eldar, Dec 29 2020
Showing 1-9 of 9 results.