A050356 Number of ordered factorizations of n with 2 levels of parentheses.
1, 1, 1, 4, 1, 7, 1, 16, 4, 7, 1, 40, 1, 7, 7, 64, 1, 40, 1, 40, 7, 7, 1, 208, 4, 7, 16, 40, 1, 73, 1, 256, 7, 7, 7, 292, 1, 7, 7, 208, 1, 73, 1, 40, 40, 7, 1, 1024, 4, 40, 7, 40, 1, 208, 7, 208, 7, 7, 1, 544, 1, 7, 40, 1024, 7, 73, 1, 40, 7, 73, 1, 1840, 1, 7, 40, 40, 7, 73, 1
Offset: 1
Keywords
Examples
For n=6 we have ((6)) = ((3*2)) = ((2*3)) = ((3)*(2)) = ((2)*(3)) = ((3))*((2)) = ((2))*((3)), thus a(6) = 7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
A050356aux(n) = if(1==n,1/3, 3*sumdiv(n,d, if(d
A050356aux(d), 0))); A050356(n) = if(1==n,n,A050356aux(n)); \\ Antti Karttunen, May 19 2017, after the general recurrence given by Vladeta Jovovic May 25 2005 in A050354.
Formula
Dirichlet g.f.: (3-2*zeta(s))/(4-3*zeta(s)).
a(p^k) = 4^(k-1).
Sum_{k=1..n} a(k) ~ -n^r / (9*r*Zeta'(r)), where r = 2.52138975790328306967497455387140053675965539610041801606891036... is the root of the equation Zeta(r) = 4/3. - Vaclav Kotesovec, Feb 02 2019
Comments