A050363 Number of ordered factorizations into prime powers greater than 1.
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 5, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 6, 1, 16, 2, 2, 2, 14, 1, 2, 2, 12, 1, 6, 1, 5, 5, 2, 1, 28, 2, 5, 2, 5, 1, 12, 2, 12, 2, 2, 1, 18, 1, 2, 5, 32, 2, 6, 1, 5, 2, 6, 1, 37, 1, 2, 5, 5, 2, 6, 1, 28, 8, 2, 1, 18, 2, 2, 2, 12, 1, 18, 2, 5, 2, 2, 2, 64
Offset: 1
Keywords
Examples
From _R. J. Mathar_, May 25 2017: (Start) a(p^2) = 2: factorizations p^2, p*p. a(p^3) = 4: factorizations p^3, p^2*p, p*p^2, p*p*p. a(p*q) = 2: factorizations p*q, q*p. a(p*q^2)= 5: factorizations p*q^2, q^2*p, p*q*q, q*p*q, q*q*p. (End)
Links
- R. J. Mathar, Table of n, a(n) for n = 1..5000
Programs
-
Maple
read(transforms) ; [1,seq(-A010055(n),n=2..100)] ; DIRICHLETi(%) ; # R. J. Mathar, May 25 2017
Formula
Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of prime powers >1.
a(p^k) = 2^(k-1).
a(A002110(k)) = k!.
G.f. A(x) satisfies: A(x) = x + Sum_{p prime, k>=1} A(x^(p^k)). - Ilya Gutkovskiy, May 11 2019
Comments