cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050363 Number of ordered factorizations into prime powers greater than 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 5, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 6, 1, 16, 2, 2, 2, 14, 1, 2, 2, 12, 1, 6, 1, 5, 5, 2, 1, 28, 2, 5, 2, 5, 1, 12, 2, 12, 2, 2, 1, 18, 1, 2, 5, 32, 2, 6, 1, 5, 2, 6, 1, 37, 1, 2, 5, 5, 2, 6, 1, 28, 8, 2, 1, 18, 2, 2, 2, 12, 1, 18, 2, 5, 2, 2, 2, 64
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The Dirichlet inverse is in A010055, turning all but the first element in A010055 negative. - R. J. Mathar, Jul 15 2010
Not multiplicative: a(6) =2 <> a(2)*a(3) = 1*1. - R. J. Mathar, May 25 2017

Examples

			From _R. J. Mathar_, May 25 2017: (Start)
a(p^2)  = 2: factorizations p^2, p*p.
a(p^3)  = 4: factorizations p^3, p^2*p, p*p^2, p*p*p.
a(p*q)  = 2: factorizations p*q, q*p.
a(p*q^2)= 5: factorizations p*q^2, q^2*p, p*q*q, q*p*q, q*q*p. (End)
		

Crossrefs

Programs

  • Maple
    read(transforms) ;
    [1,seq(-A010055(n),n=2..100)] ;
    DIRICHLETi(%) ; # R. J. Mathar, May 25 2017

Formula

Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of prime powers >1.
a(p^k) = 2^(k-1).
a(A002110(k)) = k!.
a(n) = A050364(A101296(n)). - R. J. Mathar, May 26 2017
G.f. A(x) satisfies: A(x) = x + Sum_{p prime, k>=1} A(x^(p^k)). - Ilya Gutkovskiy, May 11 2019