cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050369 Number of ordered factorizations of n into 2 kinds of 2, 3 kinds of 3, ...

Original entry on oeis.org

1, 2, 3, 8, 5, 18, 7, 32, 18, 30, 11, 96, 13, 42, 45, 128, 17, 144, 19, 160, 63, 66, 23, 480, 50, 78, 108, 224, 29, 390, 31, 512, 99, 102, 105, 936, 37, 114, 117, 800, 41, 546, 43, 352, 360, 138, 47, 2304, 98, 400, 153, 416, 53, 1080, 165, 1120, 171, 174, 59, 2640
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

Dirichlet inverse of (A000027*A153881). - Mats Granvik, Jan 03 2009

Crossrefs

Cf. A074206.

Programs

  • Mathematica
    a[1]=1; a[n_]:=a[n]=n*Sum[If[d==n,0,a[d]/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 02 2019 *)

Formula

Dirichlet g.f.: 1/(2-zeta(s-1)).
a(n) = n*Sum_{d divides n, d1, a(1)=1. - Vladeta Jovovic, Feb 09 2002
Sum_{k=1..n} a(k) ~ -n^(1+r) / ((1+r)*Zeta'(r)), where r = A107311 = 1.728647238998183618135103010297... is the root of the equation Zeta(r) = 2. - Vaclav Kotesovec, Feb 02 2019
G.f. A(x) satisfies: A(x) = x + 2*A(x^2) + 3*A(x^3) + 4*A(x^4) + ... - Ilya Gutkovskiy, May 10 2019
For n > 0, a(n) = n * A074206(n). - Vaclav Kotesovec, Mar 18 2021