A050370 Number of ways to factor n into composite factors.
1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 3, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 1, 4, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 1, 1, 1, 1, 0, 3, 2, 1, 0, 3, 1, 1, 1, 2, 0, 3, 1, 1, 1, 1, 1, 5, 0, 1, 1, 3, 0, 1
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
with(numtheory): g:= proc(n, k) option remember; `if`(n>k, 0, 1)+ `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)), d=divisors(n) minus {1, n})) end: a:= proc(n) a(n):= add(mobius(n/d)*g(d$2), d=divisors(n)) end: seq(a(n), n=1..100); # Alois P. Heinz, May 16 2014
-
Mathematica
g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; a[n_] := Sum[ MoebiusMu[n/d]*g[d, d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 23 2017, after Alois P. Heinz *)
-
Python
from sympy.core.cache import cacheit from sympy import mobius, divisors, isprime @cacheit def g(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum((0 if d>k else g(n//d, d)) for d in divisors(n)[1:-1])) def a(n): return sum(mobius(n//d)*g(d, d) for d in divisors(n)) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 19 2017, after Maple code
Formula
Dirichlet g.f.: Product_{n is composite}(1/(1-1/n^s)).
Moebius transform of A001055. - Vladeta Jovovic, Mar 17 2004
Comments