cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050430 Length of longest palindromic subword of (n base 2).

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 3, 3, 4, 3, 3, 2, 3, 3, 4, 4, 5, 4, 4, 3, 5, 4, 3, 3, 4, 3, 5, 3, 3, 4, 5, 5, 6, 5, 5, 5, 4, 4, 4, 3, 4, 5, 5, 4, 6, 5, 4, 4, 5, 4, 6, 3, 5, 5, 5, 3, 4, 3, 5, 4, 4, 5, 6, 6, 7, 6, 6, 5, 5, 5, 5, 5, 7, 5, 4, 6, 4, 5, 4, 4, 5, 6, 4, 5, 7, 5, 5, 4, 4, 6, 6, 5, 7, 6, 5, 5, 6, 5, 7, 5, 4, 6, 6, 3, 4
Offset: 1

Views

Author

Keywords

Comments

a(A083318(n-1)) = n; a(A193159(k)) = 3, 1 <= k <= 26. [Reinhard Zumkeller, Jul 17 2011]

Examples

			(11 base 2) = 1011, containing the palindrome 101, therefore a(11) = 3.
		

Crossrefs

Cf. A007088; A050431 (base 3), A050432 (base 4), A050433 (base 5).

Programs

  • Haskell
    import Data.Char (intToDigit, digitToInt)
    import Numeric (showIntAtBase)
    a050430 n = a050430_list !! (n-1)
    a050430_list = f 1 where
       f n = g (showIntAtBase 2 intToDigit n "") : f (n+1)
       g zs | zs == reverse zs = length zs
            | otherwise        = max (h $ init zs) (h $ tail zs)
       h zs@('0':_) = g zs
       h zs@('1':_) = a050430 $ foldl (\v d -> digitToInt d + 2*v) 0 zs
    -- Reinhard Zumkeller, Jul 16 2011
  • Maple
    # A050430 Length of longest palindromic factor of n for n in [M1..M2] - from N. J. A. Sloane, Aug 07 2012, revised Aug 11 2012
    isPal := proc(L)
        local d ;
        for d from 1 to nops(L)/2 do
            if op(d, L) <> op(-d, L) then
                return false;
            end if;
        end do:
        return true;
    end proc:
    # start of main program
    ans:=[];
    M1:=0; M2:=64;
    for n from M1 to M2 do
    t1:=convert(n,base,2);
    rec:=0:
    l1:=nops(t1);
    for j1 from 0 to l1-1 do
    for j2 from j1+1 to l1 do
    F1 := [op(j1+1..j2,t1)];
    if (isPal(F1) and j2-j1>rec) then rec:=j2-j1; fi;
    od:
    od:
    ans:=[op(ans),rec]:
    od:
    ans;
  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n, 2]}, k = Length@ id; While[ Union[# == Reverse@# & /@ Partition[id, k, 1]][[-1]] != True, k--]; k]; Array[f, 105] (* Robert G. Wilson v, Jul 16 2011 *)

Formula

a(n) <= min(a(2*n), a(2*n+1)). [Reinhard Zumkeller, Jul 31 2011]

Extensions

Extended by Ray Chandler, Mar 11 2010

A050432 Length of longest palindromic subword of (n base 4).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 3, 2, 2, 1, 3, 2, 1, 1, 3, 1, 2, 2, 1, 3, 1, 1, 2, 3, 1, 2, 2, 3, 2, 1, 1, 3, 2, 2, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 3, 2, 2, 2, 3, 3, 4, 2, 2, 3, 3, 3, 3, 3, 1, 2, 1, 3, 1, 1, 2, 2, 3, 2, 2, 3, 4, 3, 3, 2, 3, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    LPS:= proc(L) local nL,n,i;
      nL:= nops(L);
      for n from nL to 1 by -1 do
        for i from 1 to nL-n+1 do
          if L[i..i+n-1] = ListTools:-Reverse(L[i..i+n-1]) then return n fi
      od od:
    end proc:
    seq(LPS(convert(n,base,4)),n=1..100); # Robert Israel, Dec 17 2020

Formula

a(n) <= min(a(4*n+k): 0 <= k < 4). [Reinhard Zumkeller, Jul 31 2011]

A050433 Length of longest palindromic subword of (n base 5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 3, 2, 2, 2, 1, 3, 2, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 3, 2, 2, 1, 1, 3, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 2, 3, 1, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    LPS:= proc(L) local nL,n,i;
      nL:= nops(L);
      for n from nL to 1 by -1 do
        for i from 1 to nL-n+1 do
          if L[i..i+n-1] = ListTools:-Reverse(L[i..i+n-1]) then return n fi
      od od:
    end proc:
    seq(LPS(convert(n,base,5)),n=1..100); # Robert Israel, Dec 17 2020

Formula

a(n) <= min(a(5*n+k): 0 <= k < 5). [Reinhard Zumkeller, Jul 31 2011]
Showing 1-3 of 3 results.