cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050446 Table read by ascending antidiagonals: T(n, m) giving total degree of n-th-order elementary symmetric polynomials in m variables.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 8, 14, 10, 5, 1, 1, 13, 31, 30, 15, 6, 1, 1, 21, 70, 85, 55, 21, 7, 1, 1, 34, 157, 246, 190, 91, 28, 8, 1, 1, 55, 353, 707, 671, 371, 140, 36, 9, 1, 1, 89, 793, 2037, 2353, 1547, 658, 204, 45, 10, 1, 1, 144, 1782, 5864, 8272, 6405, 3164, 1086, 285, 55, 11, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

T(n, m) is a polynomial of degree n in m. For example, T(2, m) = (m + 1)(m + 2)/2. For the polynomials corresponding to n = 1, 2, ..., 10, see the Cyvin-Gutman reference (p. 143). Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
Let LOOP X C_k, k >= 1, be the graph constructed by attaching a loop to each vertex of the cycle graph C_k. Let G_n, n >= 0, be the graph obtained by deleting one edge from LOOP X C_{n+1} while retaining the n + 1 loops; e.g., for n = 4, see the graph G_4 at the top of the page in the Stanley link below. Then T(n, m) equals the number of magic labelings of G_n having magic sum m. (See the second Mathematica program below which requires the "Omega" package authored by Axel Riese and which can be downloaded from the link provided in the article by Andrews et al.) - L. Edson Jeffery, Oct 19 2017
For n != 1, T(n, m) is the number of up-down words of length n over an alphabet of size m. - Sela Fried, Apr 08 2025
Conjecture: T(n,m) is the number of words of length n over the alphabet [m] such that any pair of adjacent letters sum to at most m + 1. - John Tyler Rascoe, Jun 06 2025

Examples

			Array begins:
  [0]  1  1    1     1      1      1       1       1        1        1
  [1]  1  2    3     4      5      6       7       8        9       10
  [2]  1  3    6    10     15     21      28      36       45       55
  [3]  1  5   14    30     55     91     140     204      285      385
  [4]  1  8   31    85    190    371     658    1086     1695     2530
  [5]  1 13   70   246    671   1547    3164    5916    10317    17017
  [6]  1 21  157   707   2353   6405   15106   31998    62349   113641
  [7]  1 34  353  2037   8272  26585   72302  173502   377739   760804
  [8]  1 55  793  5864  29056 110254  345775  940005  2286648  5089282
  [9]  1 89 1782 16886 102091 457379 1654092 5094220 13846117 34053437
  ...
Triangle starts:
  [0] 1;
  [1] 1,  1;
  [2] 1,  2,  1;
  [3] 1,  3,  3,  1;
  [4] 1,  5,  6,  4,  1;
  [5] 1,  8, 14, 10,  5, 1;
  [6] 1, 13, 31, 30, 15, 6, 1;
		

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 142-144).

Crossrefs

Columns give A000012, A000045, A000045, A006356, A006357, A006358, ...
Cf. A050447.

Programs

  • Maple
    A050446 := proc(n,m)
        option remember;
        if m=0 then
            1;
        else
            procname(n,m-1)+add( procname(2*k,m-1) *procname(n-1-2*k,m), k=0..floor((n-1)/2) );
        end if;
    end proc:
    for d from 0 to 12 do
        for m from 0 to d do
            printf("%d,",A050446(d-m,m)) ;
        end do:
    end do: # R. J. Mathar, Dec 14 2011
    A050446 := := (n, m) -> evalf(abs(add(tan(2*j*Pi/(2*m + 1))^2*sec(2*j*Pi/(2*m + 1))^(n - 1), j = 1 .. m))/(2^(n - 1)*(2*m + 1))): # Sela Fried, Apr 28 2025
  • Mathematica
    t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1 - 2k, m], {k, 0, (n-1)/2}]; t[n_, 0] = 1; Flatten[Table[t[i-k , k-1], {i, 1, 12}, {k, 1, i}]] (* Jean-François Alcover, Jul 25 2011, after formula *)
    << Omega.m; nmax = 9; Do[cond[n_] = {}; If[n == 0, cond[n] = {a[1] == a[2]}, AppendTo[cond[n], {a[1] + a[2] == a[2 n + 2], a[2 n] + a[2 n + 1] == a[2 n + 2]}]; If[n > 1, Do[AppendTo[cond[n], a[2 j] + a[2 j + 1] + a[2 j + 2] == a[2 n + 2]], {j, n - 1}]]]; cond[n] = Flatten[cond[n]]; f[n_] = OEqSum[Product[x[i]^a[i], {i, 2 n + 2}], cond[n], u][[1]] /. x[2 n + 2] -> y /. x[] -> 1; Do[f[n] = OEqR[f[n], Subscript[u, j]], {j, Length[cond[n]]}], {n, 0, nmax}]; Grid[Table[CoefficientList[Series[f[n], {y, 0, nmax}], y], {n, 0, nmax}]] (* _L. Edson Jeffery, Oct 19 2017 *)
  • Python
    from functools import cache
    @cache
    def T(n, k):
        return T(n, k - 1) + sum(T(2 * j, k - 1) * T(n - 1 - 2 * j, k)
            for j in range(1 + (n - 1) // 2)) if k > 0 else 1
    for n in range(6): print([T(n - k, k) for k in range(n + 1)])
    # Peter Luschny, Jun 08 2024

Formula

T(n, m) = T(n, m - 1) + Sum_{k=0..(n-1)/2} T(2*k, m - 1)*T(n - 1 - 2*k, m).
From Sela Fried, Apr 08 2025: (Start)
T(n, m) = 1/(2^(n-1)*(2*m+1))*|Sum_{j = 1..m} tan^2(2*j*Pi/(2*m+1))*sec^(n+1)(2*j*Pi/(2*m+1)))|.
G.f. for words of odd length over an alphabet of size m: x*U_{m-1}(1-x^2/2)/V_{m-1}(1-x^2/2),
g.f. for words of even length over an alphabet of size m: 1/V_{m-1}(1-x^2/2),
where U_k(x) and V_k(x) are the Chebyshev polynomials of the second and third kind, respectively. (End)

Extensions

More terms from Naohiro Nomoto, Jul 03 2001