A050446 Table read by ascending antidiagonals: T(n, m) giving total degree of n-th-order elementary symmetric polynomials in m variables.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 8, 14, 10, 5, 1, 1, 13, 31, 30, 15, 6, 1, 1, 21, 70, 85, 55, 21, 7, 1, 1, 34, 157, 246, 190, 91, 28, 8, 1, 1, 55, 353, 707, 671, 371, 140, 36, 9, 1, 1, 89, 793, 2037, 2353, 1547, 658, 204, 45, 10, 1, 1, 144, 1782, 5864, 8272, 6405, 3164, 1086, 285, 55, 11, 1
Offset: 0
Examples
Array begins: [0] 1 1 1 1 1 1 1 1 1 1 [1] 1 2 3 4 5 6 7 8 9 10 [2] 1 3 6 10 15 21 28 36 45 55 [3] 1 5 14 30 55 91 140 204 285 385 [4] 1 8 31 85 190 371 658 1086 1695 2530 [5] 1 13 70 246 671 1547 3164 5916 10317 17017 [6] 1 21 157 707 2353 6405 15106 31998 62349 113641 [7] 1 34 353 2037 8272 26585 72302 173502 377739 760804 [8] 1 55 793 5864 29056 110254 345775 940005 2286648 5089282 [9] 1 89 1782 16886 102091 457379 1654092 5094220 13846117 34053437 ... Triangle starts: [0] 1; [1] 1, 1; [2] 1, 2, 1; [3] 1, 3, 3, 1; [4] 1, 5, 6, 4, 1; [5] 1, 8, 14, 10, 5, 1; [6] 1, 13, 31, 30, 15, 6, 1;
References
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 142-144).
Links
- G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package.
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Byeong-Gil Choe and Hyeong-Kwan Ju, A Recurrence Relation Associated with Unit-Primitive Matrices, arXiv:2305.03930 [math.CO], 2023.
- L. Carlitz and R. Scoville, Up-down sequences, Duke Math. J. (39) (1972), 583-598.
- Jane Ivy Coons and Seth Sullivant, The h*-polynomial of the order polytope of the zig-zag poset, arXiv:1901.07443 [math.CO], 2019.
- Sela Fried, A formula for the number of up-down words, arXiv:2503.02005 [math.CO], 2025.
- Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- Hyeong-Kwan Ju, On the sequence generated by a certain type of matrices, Honam Math. J. 39, No. 4, 665-675 (2017).
- Daeseok Lee and H.-K. Ju, An Extension of Hibi's palindromic theorem, arXiv preprint arXiv:1503.05658 [math.CO], 2015.
- T. Kyle Petersen and Yan Zhuang, Zig-zag Eulerian polynomials, arXiv:2403.07181 [math.CO], 2024.
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973. [Cached copy, with permission] See p. 31.
- Guoce Xin and Yueming Zhong, Proving some conjectures on Kekulé numbers for certain benzenoids by using Chebyshev polynomials, arXiv:2201.02376 [math.CO], 2022.
Crossrefs
Programs
-
Maple
A050446 := proc(n,m) option remember; if m=0 then 1; else procname(n,m-1)+add( procname(2*k,m-1) *procname(n-1-2*k,m), k=0..floor((n-1)/2) ); end if; end proc: for d from 0 to 12 do for m from 0 to d do printf("%d,",A050446(d-m,m)) ; end do: end do: # R. J. Mathar, Dec 14 2011 A050446 := := (n, m) -> evalf(abs(add(tan(2*j*Pi/(2*m + 1))^2*sec(2*j*Pi/(2*m + 1))^(n - 1), j = 1 .. m))/(2^(n - 1)*(2*m + 1))): # Sela Fried, Apr 28 2025
-
Mathematica
t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1 - 2k, m], {k, 0, (n-1)/2}]; t[n_, 0] = 1; Flatten[Table[t[i-k , k-1], {i, 1, 12}, {k, 1, i}]] (* Jean-François Alcover, Jul 25 2011, after formula *) << Omega.m; nmax = 9; Do[cond[n_] = {}; If[n == 0, cond[n] = {a[1] == a[2]}, AppendTo[cond[n], {a[1] + a[2] == a[2 n + 2], a[2 n] + a[2 n + 1] == a[2 n + 2]}]; If[n > 1, Do[AppendTo[cond[n], a[2 j] + a[2 j + 1] + a[2 j + 2] == a[2 n + 2]], {j, n - 1}]]]; cond[n] = Flatten[cond[n]]; f[n_] = OEqSum[Product[x[i]^a[i], {i, 2 n + 2}], cond[n], u][[1]] /. x[2 n + 2] -> y /. x[] -> 1; Do[f[n] = OEqR[f[n], Subscript[u, j]], {j, Length[cond[n]]}], {n, 0, nmax}]; Grid[Table[CoefficientList[Series[f[n], {y, 0, nmax}], y], {n, 0, nmax}]] (* _L. Edson Jeffery, Oct 19 2017 *)
-
Python
from functools import cache @cache def T(n, k): return T(n, k - 1) + sum(T(2 * j, k - 1) * T(n - 1 - 2 * j, k) for j in range(1 + (n - 1) // 2)) if k > 0 else 1 for n in range(6): print([T(n - k, k) for k in range(n + 1)]) # Peter Luschny, Jun 08 2024
Formula
T(n, m) = T(n, m - 1) + Sum_{k=0..(n-1)/2} T(2*k, m - 1)*T(n - 1 - 2*k, m).
From Sela Fried, Apr 08 2025: (Start)
T(n, m) = 1/(2^(n-1)*(2*m+1))*|Sum_{j = 1..m} tan^2(2*j*Pi/(2*m+1))*sec^(n+1)(2*j*Pi/(2*m+1)))|.
G.f. for words of odd length over an alphabet of size m: x*U_{m-1}(1-x^2/2)/V_{m-1}(1-x^2/2),
g.f. for words of even length over an alphabet of size m: 1/V_{m-1}(1-x^2/2),
where U_k(x) and V_k(x) are the Chebyshev polynomials of the second and third kind, respectively. (End)
Extensions
More terms from Naohiro Nomoto, Jul 03 2001
Comments