cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050447 Table T(n,m) giving total degree of n-th-order elementary symmetric polynomials in m variables, -1 <= n, 1 <= m, transposed and read by upward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 14, 8, 1, 1, 6, 15, 30, 31, 13, 1, 1, 7, 21, 55, 85, 70, 21, 1, 1, 8, 28, 91, 190, 246, 157, 34, 1, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 1, 11, 55, 285, 1086, 3164, 6405, 8272, 5864, 1782, 144, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Examples

			Table begins
.    1   1   1    1     1      1       1       1        1         1
.    1   2   3    5     8     13      21      34       55        89
.    1   3   6   14    31     70     157     353      793      1782
.    1   4  10   30    85    246     707    2037     5864     16886
.    1   5  15   55   190    671    2353    8272    29056    102091
.    1   6  21   91   371   1547    6405   26585   110254    457379
.    1   7  28  140   658   3164   15106   72302   345775   1654092
.    1   8  36  204  1086   5916   31998  173502   940005   5094220
.    1   9  45  285  1695  10317   62349  377739  2286648  13846117
.    1  10  55  385  2530  17017  113641  760804  5089282  34053437
		

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.

Crossrefs

Columns give A000012, A000027, A000217, A000330, A006322, ...

Programs

  • Mathematica
    nmax = 12; t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1-2k, m], {k, 0, (n-1)/2}]; t[n_, 0]=1; Flatten[ Table[ t[k-1, n-k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 14 2011 *)
    nmax = 10; f[0, x_] := 1; f[1, x_] := 1/(1 - x); f[n_, x_] := (x + f[n - 2, x])/(1 - x^2 - x*f[n - 2, x]); t[n_, m_] := Coefficient[Series[f[n, x], {x, 0, m}], x, m]; Grid[Table[t[n, m], {n, nmax}, {m, 0, nmax - 1}]] (* L. Edson Jeffery, Oct 19 2017 *)
  • PARI
    M(n)=matrix(n,n,i,j,if(sign(i+j-n)-1,0,1)); V(n)=vector(n,i,1); P(r,n)=vecmax(V(r)*M(r)^n) \\ P(r,n) is T(n,k); Benoit Cloitre, Jan 27 2003

Formula

See PARI code. See A050446 for recurrence.
G.f. for row n >= 0: f(n, x) = (x + f(n-2, x))/(1 - x^2 - x*f(n-2, x)), where f(0, x) = 1 and f(1, x) = 1/(1 - x) [R. P. Stanley]. - L. Edson Jeffery, Oct 19 2017

Extensions

More terms from Naohiro Nomoto, Jul 03 2001