cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050458 Difference between Sum_{d|n, d == 1 (mod 4)} d^2 and Sum_{d|n, d == 3 (mod 4)} d^2.

Original entry on oeis.org

1, 1, 8, 1, 26, 8, 48, 1, 73, 26, 120, 8, 170, 48, 208, 1, 290, 73, 360, 26, 384, 120, 528, 8, 651, 170, 656, 48, 842, 208, 960, 1, 960, 290, 1248, 73, 1370, 360, 1360, 26, 1682, 384, 1848, 120, 1898, 528, 2208, 8, 2353, 651, 2320, 170, 2810, 656, 3120, 48, 2880, 842
Offset: 1

Views

Author

Vladeta Jovovic, Feb 15 2004

Keywords

Crossrefs

a(n) = |A002173(n)|.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 4] == 1, ((p^2)^(e+1)-1)/(p^2-1), ((p^2)^(e+1)+(-1)^e)/(p^2+1)]; f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    {a(n)=if(n<1, 0, abs(sumdiv(n, d, d^2*kronecker(-4,d))))} /* Michael Somos, Aug 09 2006 */
    
  • PARI
    {a(n)= local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 1, if(p%4==1, ((p^2)^(e+1)-1)/(p^2-1), ((p^2)^(e+1)+(-1)^e)/(p^2+1)))))) } /* Michael Somos, Aug 09 2006 */
    
  • PARI
    {a(n)=if(n<1, 0, polcoeff( sum(k=1,n, x^k/(1+x^(2*k))*(k/2^valuation(k,2))^2, x*O(x^n)), n))} /* Michael Somos, Aug 09 2006 */

Formula

Multiplicative with a(p^e) = 1 if p = 2; ((p^2)^(e+1)-1)/(p^2-1) if p == 1 (mod 4); ((p^2)^(e+1)+(-1)^e)/(p^2+1) if p == 3 (mod 4). - Michael Somos, Aug 09 2006

Extensions

Edited by Michael Somos, Aug 09 2006