cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050465 a(n) = Sum_{d|n, n/d=3 mod 4} d^2.

Original entry on oeis.org

0, 0, 1, 0, 0, 4, 1, 0, 9, 0, 1, 16, 0, 4, 26, 0, 0, 36, 1, 0, 58, 4, 1, 64, 0, 0, 82, 16, 0, 104, 1, 0, 130, 0, 26, 144, 0, 4, 170, 0, 0, 232, 1, 16, 234, 4, 1, 256, 49, 0, 290, 0, 0, 328, 26, 64, 370, 0, 1, 416, 0, 4, 523, 0, 0, 520, 1, 0, 538, 104, 1, 576, 0
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Haskell
    a050465 n = sum [d ^ 2 | d <- a027750_row n, mod (div n d) 4 == 3]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Mathematica
    a[n_] := DivisorSum[n, #^2 &, Mod[n/#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^2); \\ Amiram Eldar, Nov 05 2023

Formula

a(n) = A050461(n) - A050470(n). - Reinhard Zumkeller, Mar 06 2012
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A076577(n) - A050461(n).
a(n) = (A076577(n) - A050470(n))/2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 7*zeta(3)/16 - Pi^3/64 = 0.041426822002... . (End)

Extensions

Offset fixed by Reinhard Zumkeller, Mar 06 2012