cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050471 a(n) = Sum_{d|n, n/d=1 mod 4} d^3 - Sum_{d|n, n/d=3 mod 4} d^3.

Original entry on oeis.org

1, 8, 26, 64, 126, 208, 342, 512, 703, 1008, 1330, 1664, 2198, 2736, 3276, 4096, 4914, 5624, 6858, 8064, 8892, 10640, 12166, 13312, 15751, 17584, 18980, 21888, 24390, 26208, 29790, 32768, 34580, 39312, 43092, 44992, 50654, 54864, 57148
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative because it is the Dirichlet convolution of A000578 = n^3 and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005

Crossrefs

Glaisher's E'_i (i=0..12): A002654, A050469, A050470, this sequence, A050468, A321829, A321830, A321831, A321832, A321833, A321834, A321835, A321836.

Programs

  • Mathematica
    max = 40; s = Sum[n^3*x^(n-1)/(1+x^(2*n)), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 02 2015, after Vladeta Jovovic *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(3*e+3) - s[p]^(e+1))/(p^3 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^3*(((n/d) % 4)==1)) - sumdiv(n, d, d^3*(((n/d) % 4)==3)); \\ Michel Marcus, Feb 16 2015

Formula

G.f.: Sum_{n>=1} n^3*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(3*e+3) - A101455(p)^(e+1))/(p^3 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = A175572. (End)
a(n) = Sum_{d|n} (n/d)^3*sin(d*Pi/2). - Ridouane Oudra, Sep 26 2024

Extensions

Offset changed from 0 to 1 by R. J. Mathar, Jul 15 2010