A050475 Numbers k such that x = 2^k-2 satisfies phi(x)+2 = phi(x+2).
3, 4, 6, 8, 14, 18, 20, 32, 62, 90, 108, 128, 522, 608, 1280, 2204, 2282, 3218, 4254, 4424, 9690, 9942, 11214, 19938, 21702, 23210, 44498, 86244, 110504, 132050, 216092, 756840, 859434, 1257788, 1398270, 2976222, 3021378, 6972594, 13466918, 20996012, 24036584, 25964952, 30402458, 32582658
Offset: 1
Keywords
Examples
phi(2^18-2)+2 = 131072 = phi(2^18), so 18 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..48 (terms 1..47 from Ivan Panchenko)
Programs
-
Mathematica
Flatten[Position[EulerPhi[2^# - 2] + 2 == EulerPhi[2^# ] & /@ Range[1, 250], True]] (* Vit Planocka *)
Formula
a(n) = A000043(n) + 1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004
Extensions
a(39)-a(44) from Ivan Panchenko, Apr 11 2018
Comments