A050518 An arithmetic progression of at least 6 terms having the same value of phi starts at these numbers.
583200, 1166400, 1749600, 2332800, 2916000, 3499200, 4082400, 4665600, 5248800, 5832000, 6415200, 6998400, 7581600, 8164800, 8748000, 9331200, 9914400, 10497600, 11080800, 11664000, 12247200, 12830400, 13413600, 13996800, 14580000, 15163200, 15746400
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..114 (all the terms <= 6.6*10^7).
- Tanya Khovanova, Non Recursions
- Eric Weisstein's World of Mathematics, Totient function.
Crossrefs
Programs
-
Maple
N:= 10^7: # to get all terms <= N with(numtheory): Res:= NULL: phis:= {seq(phi(i),i=2..N)}: for m in phis do S:= convert(invphi(m),set); if nops(S) < 6 then next fi; for d from 0 to 4 do Sd[d]:= select(t-> (t mod 5 = d),S, d); nd:= nops(Sd[d]); for i0 from 1 to nd-1 do s0:= Sd[d][i0]; if s0 > N then break fi; for i5 from i0+1 to nd do s5:= Sd[d][i5]; incr:= (s5 - s0)/5; if {s0+incr,s0+2*incr,s0+3*incr,s0+4*incr} subset S then Res:= Res, [s0, incr]; fi od od; od; od: sort([Res],(s,t)->s[1]
A050518 and A050519 entries map2(op,1,%); # Robert Israel, Apr 16 2015
Comments