A050533 Thickened pyramidal numbers: a(n) = 2*(n+1)*n + Sum_{i=1..n} (4*i*(i-1) + 1).
0, 5, 22, 59, 124, 225, 370, 567, 824, 1149, 1550, 2035, 2612, 3289, 4074, 4975, 6000, 7157, 8454, 9899, 11500, 13265, 15202, 17319, 19624, 22125, 24830, 27747, 30884, 34249, 37850, 41695, 45792, 50149, 54774, 59675, 64860, 70337, 76114, 82199, 88600, 95325
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[0, 5, 22, 59]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 27 2012
-
Mathematica
CoefficientList[Series[x*(5+2*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Apr 27 2012 *) LinearRecurrence[{4,-6,4,-1},{0,5,22,59},40] (* Harvey P. Dale, May 08 2012 *)
-
PARI
a(n)=n*(4*n^2+6*n+5)/3 \\ Charles R Greathouse IV, Apr 16 2012
Formula
G.f.: x*(5+2*x+x^2)/(1-x)^4. - Colin Barker, Apr 16 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 27 2012
E.g.f.: exp(x)*x*(15 + 18*x + 4*x^2)/3. - Elmo R. Oliveira, Aug 08 2025
Comments