cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050634 a(n+1) is next smallest square ending with a(n), initial term is 1.

Original entry on oeis.org

1, 81, 1681, 1461681, 220861461681, 31071113326220861461681, 36510705834446371569631071113326220861461681, 268496773864458678522722709023395604054900436510705834446371569631071113326220861461681
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; t={m=1}; Do[If[Take[d[x=n^2],-Length[y=d[m]]]==y,AppendTo[t,m=x]],{n,Flatten[Table[10k+{-1,1},{k,50000}]]}]; t (* Jayanta Basu, May 30 2013 *)

Extensions

More terms from Jonathan Cross (jcross(AT)wcox.com), Oct 09 2001

A048557 a(1) = 1; a(n+1) is next smallest nontrivial square beginning with a(n).

Original entry on oeis.org

1, 16, 169, 169744, 16974441796, 1697444179660172924176, 16974441796601729241768240010144800000000001, 1697444179660172924176824001014480000000000182400101448000000000020000000000000000000001
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

Next terms are 176, 351 and 702 digits long.

Crossrefs

Cf. A048558, A050628, A061110. See A048558 for the square roots.

Programs

  • Mathematica
    $MaxExtraPrecision = 2^10; a[n_] := a[n] = Block[{k = 10, m = a[n - 1]}, id = IntegerDigits@ m; lng = Length@ id; While[c = Ceiling[ Sqrt[ m*k]]^2; Take[ IntegerDigits@ c, lng] != id, k *= 100]; Min[c, (Sqrt[m]*10^(lng/2) + 1)^2]]; a[1] = 1; Array[a, 11] (* Robert G. Wilson v, Dec 18 2014 *)

A050629 a(n+1)^2 is next smallest nontrivial square containing a(n)^2 as a substring, initial term is 1.

Original entry on oeis.org

1, 4, 13, 237, 6013, 3655347, 6491041181267
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1999

Keywords

Crossrefs

Formula

a(n) = sqrt(A050628(n)).

Extensions

a(7) from Max Alekseyev, Feb 15 2012
Showing 1-3 of 3 results.