A050772 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 5 skipped primes.
18, 24, 25, 46, 57, 161, 203, 209, 288, 319, 323, 391, 736, 798, 837, 858, 928, 930, 1035, 1088, 1089, 1218, 1300, 1376, 1690, 2254, 2418, 2478, 2673, 2842, 2871, 3045, 3220, 3325, 3458, 3510, 3588, 4186, 4508, 4617, 4824, 5054, 5180, 5248, 5472, 6069
Offset: 1
Keywords
Examples
18 is a term because 18 + (2+3+3) = 26 + (2+13) = ending prime 41. Between 18 and 41 one finds 5 primes 19, 23, 29, 31 and 37.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(n) local r, s, t; if isprime(n) then return false fi; t:= 0: s:= n; do r:= s; s:= s + add(p[1]*p[2],p=ifactors(s)[2]); t:= t + numtheory:-pi(s-1) - numtheory:-pi(r); if isprime(s) then return t=5 fi; if t > 5 then return false fi; od; end proc: select(filter, [$2..10000]); # Robert Israel, May 08 2020
-
Mathematica
ok[n_] := CompositeQ[n] && Block[{k=n, p = NextPrime[n, 6]}, While[k < p, k += Total[ Times @@@ FactorInteger[k]]]; k == p]; Select[Range@ 6069, ok] (* Giovanni Resta, May 08 2020 *)
Extensions
Offset changed to 1 by Robert Israel, May 08 2020